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ANALYTICAL MCDEL FOR TILTING FROPRCTOR AIRCRAFT
DYNAMICS, INCLUDING BLADE TORSION AND COUPLED
BENDING MODES, AND CONVERSION MODE OPERATION

Wayne Johnson*

U.S. Army Air Mobility R&D Laboratory
Moffett Field, California

SUMMARY
An analytical model is developed for proprotor aircraft dynamics.
The rotor model includes coupled flap-lag bending modes, and blade torsion
degrees of freedom. The rotor aerodynamic model is generally valid for high
and low inflow, and for axial and nonaxial flight. For the rotor support,
a cantilever wing is considered; incorporation of a more general support
with this rotor model will be a straight-forward matter.

INTRODUCTION
This report presents the development of an analyticul model for tilting

. proprotor aircraft dynamics. The emphasis in this model is on the rotor.

The rotor support for the present is limited to a cantilever wing, dut
the incorporation of a more general support model with this rotor model
will be a straight-forward matter.

The rotor motion is represented bys ooupled flap and lag bending
modes; rigid pitch (control system flexibility) and blade elastic torsion
deflection: gimbal tilt and rotor speed perturbation degrees of freedonm
(optional). The six components of shaft linear and angular motion are
included, and rotor blade pitch control. The rotor aerodynamic model is

*Resea=ch Scientist, large Scale Aerodynamics Branch, NASA-Ames
Research Center
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generally valid for high and low inflow, and for axial and nonaxial flight.
The effects of compressibility and static stall may be included, but
reverse flow and unsteady wake aerodynanic interference effects are
neglected. Three components of aerodynamic gust are included as external
excitation. The rotor model includes gimbal undersling, torque offset,
precone, droop, sweep, and feathering axis offset (for the case with blade
bending flexibility inboard of the pitch bearing). Center of gravity,
aerodynanic center, and tension center offsets are included; but the elastic
axis is assumed to be a straight line, and only offset ﬂ;om the pitch

axis by the droop and sweep rotations. For the equations of motion in

the nonrotating frame it is assumed the rotor has three or more blades.

The equations of motion are derived for the rotor degrees of freedom,

along with the forces and moments acting on the hut,

This rotor model may be coupled with any support model. The present
derivation is restricted to a cantilever wing support (fig. 1). The wing motion
is represented by three degrees of freedoms wing vertical bending, wing
chordwise bendiing, and wing torsion. Wing aerodynamic forces are included,
and a wing trailing edge flap in the controls.

The differential equations of motion for the proprotor and
support system are presented in matrix form, for three cases: axial flow,
which is a constant coefficient system; nonaxial flow, which is properly
a periodic coefficient system; and a constant coefficlient approximation
for the nonaxial flow equations, using the mean of the coefficients in the
nonrotating frame., The axial flow case is applicable to the proprotor
ajrcraft in airplane mode cruise and in helicopter mode hover flight.

The nonaxial flow case is applicable to helicopter mode forward flight,
and to conversion mode flight of the proprotor aircraft.

Solutions and results for proprotor dynamics from these equations
are not presented in this report, but are left to a later work,




The body of this report is composed of the following

sections:

Bending/Torsion of Highly Twisted Beam

Equations of Motion for a Rotating Blade

Aerodynamics

lotor Trim

Blade Bending amd Torsion Modes

Support Equations of Motion: Cantilever Wing

Equations of Motion




BENDING/TORSION OF HIGHLY IWISTED BEAM

This section presents an englineering beam theory model for the
coupled flap/lag bending and torsion of a rotor blade, with large pitch
and twist. A high aspect ratio (cf the structural elements) is assumed
so the beam model is applicable. The object is to reiate the bending
moments at the section, and the torsion moment, to the blade deflection and
elastic torsion at that section. The analysis follows the work of
references 1-3.

The basic assumptions are i) an elastic axis exists, and the
undeformed elastic axis is a straight line, and 11) the blade has a
high aspect ratio (of the structural elements), so engineering beam
theory applies. Figure 2 shows the geometry of the undeformed blade.
The span vaiable is r, measured from the center of rotation along the
straight elastic axis. The section coordinates are x and z, the principle
axes of the section, with origin at the elastic axis. So by definition

S *»3dA =O
Really the integral is ovm}; tension carring elements, i.e. modulus
welghted, szE dA = 03 so x and z are modulus principle axes.
This remark holds for all the section integrals in this section. The
tension center (modulus weighted centroid) is x, aft of the eclastic

axis, and on the x axis, 1i.e.

C

stk= *c.A

(28A= o
Again, these are modulus weighted integrals., If E is uniform over the
sectlion, then Xa is the area centroid; and if the sectlon mass distribution

is the same as the E distribution, then Xa equals the section center of
gravity location,

The angle of the major principle axis (the x axis) with respect
to the hub plane is © . The existence of the elastic axis means that
elastic twist about the EA occurs without bending; we may, and shall, include
the elastic torsion deflection in & . The blade feathering axis (FA) is at
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Toad the blade pitch is descrided by roct pitch e° (rigid pitch about
the FA, including that due to elastic distortion of the control system),
built in twist e,,“ » and elastic torsion about the EA Qe ¢

= %4+ 84, + BSe

8°(%) = root pitch; command collective and
cyclic and control system flexibility;
rigid pitch about the FA; equals & at

b o
FA
Ono(f) = built in twist, Owe(Twa dw D

Be (3 W) = elastic torsion, e (rp, ,¥) ®©O

There is stress in the blade due to Sg only. It is assumed that Oy is
small, but 3. and Ogy are allowed to be large,

The unit vectors in the hudb plane (HP) axis system (rotating)
are fc ,'j‘g ;ﬁg ¢« The unit vectors for the principle axes of the
section (x,r,z) are f,j’,ﬁ $ these are for no bending, but including
the elastic torsion in the pitch angle € . So the principle unit
vectors are rotated by © from the HP:

2 = 2ac0s® — Fa 5w O
I = Je
f: Zaiw O + ﬁﬂ“‘e

Description of the bending

Now the engineering beam theory assumption is introduced: 1ii) plane
sections perpendicular to the EA remain so after the bending of the blade.
Figure 3 shows the geometry of the deformed section. The deformation of
the blade is deacribed by

1) deflection of the EA: Xr Tye B,

11) rotation of the sections §,, &y

111) twist about the EA, ixplicit in < .'\2

The quantities x , r, 5.s $y + $p + B¢ are assumed to be small.
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The unit vectors of the unbunt cross sectlon are ‘ﬂ,j,ﬁ « The
unit vectors in the deformed cross section are f.,’-g,,;ﬁ“ 1 Ty )f;g
are the priciple axes of the section, and ‘j,‘ is tangent to the deformed
EA. It follows then that

Tug = i*‘b!’?
'3153 '_?—- -k;‘t-* +1~i

Rus = R = b

Now by definition <Jug=OF/Qs where © = %eT +(*+ )T + 2 %

and s = arc length along the deformed EA. Hence to {irst order

—}‘5.‘—-" "?1- (lof*%oi\v
=3+ (»xd +2.8"DT + (2 —x0®" Y X

It follows the rotation of the sectlion is

by = 2o — %e®

or $yT + ¢"a = (2T -)kot)q

The undeflected position of the blade element is
-
e CF +%T+ a-t

and the deflected position
e= cr-rt'-)'? + %aT + %oi + *'e;s + %ils
= €] +ret+ni+ 2R+ (nby —2by)P 43T+ 1

) ‘ A ’ < ) \
"Sé/ f(\f 'e‘b.. 't,{ "5.- q:\c
$

L]

We shall neglect T, for now, The strain amalysis is simplified then since
to first order s = r) T, Jus$ gives uniform strain over the section, so it
a2y be simply added back later.

-6~




Analysis of strain
The metric of the undeformed blale -- no bending, and no torsion

L4 v
50 38y, -- 1s
?'?:: “Y +¢"J’+ tf

%-i: _xe:w‘e + 3 +te:-‘_,i
2 2
Qre = a—-f-%{_ = 4 o4+ &, (xta3l)

The metric of the deformed blade, with bending and torsion, is

= (we%eYT + (T +x ¢§, —2411)]) + (i"'iae

-

"4

3 4 v v Y 'i
ot = e + " (42 NT + (14 xdy 24 DT + (20 — (% +3,))

-
Gee = é% . 2%- = O+t -2 + (v +8" (343

+ (8 = 3" (xeneO?
Then the-axial component of the stain tensor:
Eﬂ. = i (Ger — 5"")
s T vl
i [.(uq;-u: Y ot (a4 (24 = 9,3

+ (2 — &' (reve)) — aS J

The 1linear strain, for small x , 2., &, + Py §3+ 18

v 't
Ve 2 €cr = %d3 —2dy + Ons (Xre+330)
+ Ay (e =287 + & (2+22))



The str2in due to the blade tension, €4 , 15 a constant such
that the tencion is given by

T = Ssc...-h'oie" SA = € SEDA

Substituting for €ee and using gz dA = 0, Sx dA = xCA, and
S(x‘*»}‘-)&A = Tp = V.;'A
where kp is the (modtlus 1. thted) radius of gvration about the EA, obtain

for €+ :
1 v v
‘-r:&T-,A: ‘b;_‘(,'*b:'p YoReg == Oy To Ne
v L a v
+@ & kp +

In this expression, the strain due to the blade extension T, has been anded.
It follows the strain may be wriiten, wi'h €+ = T/EA

Ecrz v+ (W=%) (4’{.’ B;U 4’13 -%(d):* B;u ¢i3
+ 35,9¢ (x4t o k)

Section moments

To find the moments on the section, the second engineering beam
theory assumption is introduced: iv) all stresses except Yz~ are
neglig’ble. The axial stress is given by wz, = E€¢r . The lirection

of Yee is A a—é’ lé:-E
¢ = ¢ 20

The moment on the deformed crocs section (figure &) is

-~
N M = MyTug + MePus + Mtﬁts
To find M, integrate the moment about the EA due to the elemental force
Ter OA on the crocs sections

o
SR = (xTues + 2Exs) » 7 OA
= E—!fns + 3By + Svo (x4 28) Tas Jore OA

Integrating over the blade section, there follows the total moments due
to bending and elastic torsion:



ﬁw\‘ - .. Ez/ ¢S ¢ SA
S

I AN

N\% = \ WO SA

',.u.,ho “

Me = GT ¢ —+ § (-.u;,t)e,'._, oz DA

2 how

’ . '
To Ar has been added the torsion moment GJ©g , Jue to shear stresses

produced by elastic torsion. There moments are about the E:. For bending

it is more convenient to work with momerts about the tension center x,:
Mx = — §2vic OA

Substituting for See and integrating, the moments ares

Mx = ETep (b1 +'03) ~ 870 £
Mya ETus ( $3— & d) + &' 2¢ EZue
Me=z (GT+WT+"ETp) &% + O T
+ " LETnr (dF - ") —EZqp (dy +0 #3)]

where

= = WA = S(x‘+1‘39A
a2z (Oroxd(wte?)BA
X = S = (x¥+22)OA

Tor = § (Rart—igt) A
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The integrals are all over the tension carrying elemenis of course, i.e,
modulus weighted. The tension T acts at the tenslon center X herce the

bending moments about the EA are given t*—-om those about x. by

c
(M3)en = M3 +%xT

adea = M

The bending/torsion coupling is due to EIyp and ET ;i for a symmetrical

section EI,,, = O,
zp

Vector formulation

Define the bending moment vector

=
I\‘\(gt = Ml-c'.'Mti

and the flap/lag deflection D= (CT—%¥)

()
( Mg is not quite the moment on the section, because M, and M are

really the T«s and {u components of the moment). The derivatives

R
of w are

(Q.f-*ot\' = (%6 ~%0@"D7T - (nS "'!oa")e

(tﬂ?-—xi\“ = (bl +2"d)T + (#: —e"cbdﬁ

Then the result for the bending and torsion moments may be written:

Fl\bea\ - (e:!"e'e - E:“.€13 . (‘.-ﬂ "-*oix"

+05, 0l (X X —EXyeT)

Me = [T YT 4 B €T | O¢ 4+ O%, b
P L4}
+ O CET B -ETppT )+ (2T —%®)

This is the result sought in this section,
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Writing the EI dyadic as &x = g:r_“f‘l’.-v Ez“’iﬁ and the
a—
coupling as Exp= gx‘pi- G:!p't » this result becomes

- ()
ME = EX :N)'

v v v —

me = (o +y T or, Expr ] oe + h:"ﬁ:w
+om Exp W

This form is an obvious extension of the engineering beam theory result
for uncoupled bending and torsion ( G-:,, = 0 case). The ve.tor formulation
of the result is a major simplification. The vector form allows an easy
transformation from one axis system to another. In fact, the vector fomm
is independent of the axis system used (the base of the vectors), which
is the source of the simplification. Working with the vector form simplifies
the analysis to follow; the base of the vectors (for example, either the
hub plane system, Zg éﬂ , or the principle axis system, ¥ i:-'i )
will be considared only when come to evaluate the coefficients of the
equations of motion, never in the derivation,

This is a linearized result. So the -E;i’. appearing in EI
and in W are based on the trim pitch angle @=@®°+®ni. The perturbation
of -r,‘;f due to ®¢ gives second order moments, which have already
been neglected in the derivation. The net torsion modulus is

Gl = ST + BT 4 oW Exee

vwhere T = Q" S\, aal = centrifugal temsion in the blade. For
the elastic torsion stiffness characteristic of rotor blades, the GJ tem
usually dominates. The kpz T term is only important for very soft (torsionally)
blades, mear the root. The ©% EXpsp term is only important for very

soft, high twist blades.
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EQUATIONG OF HCTICN 77 A ROTATING BL.ACE

Thir secticn derives the o~ ~tions ¢f . tin for a bhelicopter
rotor blade, ..ie blade -~otion considcred inc « < courled flap/lag
hending (including the rigid modes if the blade is articulated),
rigid pitch, elastic torsion, gimbal pitch and roll, and rotation speed
verturbation. The analysis includes the effects of precone, droop, and
sweep; feathering axis offset; and - r~que offset and gimbal undersling.
The effects of shaft motion, and the hub forces and moments are included,
so this analysis may be combined with the equations of motion for a body
or support to give the complete aeroelastic model forthe system,
Numerous appreximations are made in the course of the analysis, in order
to obtalin a tractable set of equations,

Rotor Configuration
Consider an N-bladed rotor, rotating at speed .S2. (figure 5).

The mth rotor blade 1s at

Woe 3 W +malv, wazlese N
where &% = 2ar/Nand Wa SLT 1s a nondimensional time variable.
The S system (¥, % ,‘es ) 1s a nonrotating, hub plane coordinate
system; it is an irertial frame. The B system ( ¥g,Ja ;i. ) is a
coordinate frane rotating with the mth blade. The acceleration, angular
velocity, and angular acceleration of the hud, and the forces and moments
exerted by the rotor on the hudb are defined in the nonrotating HP frame --
the S system. The rotor dlade equations of motion are derived in the
rotating frame -- the B system. Figure €(a) shows the definition of the
rotor shaft motion, linear and angular displacement in an inertial frame.
Figure 6(b) shows the definition of forces and moments on the hub, in the
nonrotating frame,

Blade root geometry
Figure 7 shows the blade root geometry considered (undistorted).

The origin of the B system is the location of the gimbal; if there is no
gimbal, this is just the pnint where the shaft motion and hud forces are

-12-
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defined. Tne gimbal is at the center cf the B and S frames. The hub

of the rotor is z,, below the gimbal (gimbal undersling). The torque

offset Xpa is po.sl.’z‘:ive in the -7.; direction. The azimuth Wa 1is
measured to the feathering axis line (its projection in the HP), so the
FA ic parallel to thre :f@ axis, and offset xFA from the center of
rotation. The precone angle SFA, gives the orientation of the FA with
respect to the Lub plane; S, 1s positive upward, and is assumed to

be a small angle. The FA is offset from the center of rotation by Topi
the FA is located at r = Tea along the blade. The rizid pitch rotation
of the blade about the feathering axis occurs at Tpa®
&eay and sweep angle JSFA3 occur at Ty » Just outboard of +he

The droop angle

feather bearing; Jea, and o®A, give the orientation oi the EA of
the blade with respect to the FA. Note that these angles are measured
in the HP frame; &fa, is positive downward, and &FAy  is positive
aft. Both Sea, and 8%ay are assumed to be small angles.

From the gimbal to the blade root is the hud, underslung Ly Zpy
and torque offset by Xpa o From the root to the FA is a shank. of length
rp,» Which undistorted is . straight line an an angle SfA; to the hud
plane (small precone). The blade outboard of the FA at Tp,r undistorted,
is a straight elastic axis, with small droop and sweep ( 5’*2 and éPAJ )

with:respect to the FA direction,

From the gimbal to the root is a rigid hub. The shank (inboard
of the FA at rFA) and the blade (outboard of rFA) are flexible in bending.
The shank is assumed to be rigid in torsion, 1.e. the effect of torsion of
the hub inboard of the feathering axis is neglected. The ‘'lade outboard
of the FA is flexible in torsicn as well as bending. There is rigid pitch

rotation of the blade about the FA, which takes place at Tea? about the local

Girection of the FA at Tea? including the bending of the shank., Inclusion
of the bending flexibility of the blade inboard of the feathering axis

means the the general rotor configuration is considereds the articulated

rotor with the FA inboard or outboard of the hinges, or the cantilever blade

with or without flexibility inboard of the FA. The special case of a rigid
chank can be considered as well of course.,

-13-
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Geometry of the blade

Figure 8 shows the unieformed geometry of the blade. It is az=wumer
that 1) an elastic axis exists, and the undeformed EA is a straight line;
and ii) the blade has a high aspect ratio, =o engineering bean theory and

1ifting iine theory are applicable. The following notation is used:

FA feathering axis

EA elastic axis

CcG xI locus of sectlion center of gravity
AC X, locus of section aerodynamic center
TC X locus of section tension canter

The distances ¥po Xao and x, are vositive aft, measured from the EA; they
are in general a function of r. The corresponding z displacements are

neglected, i,e. taken as zero,

The fn,ioﬁc cysten is the EA/principle axis system of the section.
The subscrint "o" is for the undeformed frame, i.e. no elastic torsion in
& , or gimbal or rotor speed degrees of freedom. The subscript will
be dropped when it is obvious what is meant., The direction of the uncefcrmec
FA is je i To t'?. are the directions of the local principle axes or
the secticn, undeformed (no bending or torsion).

The span variable is r, neasured from the center of rotation to
the tip. This variable is dimensionless, r = 0 at the root to r = 1 at
the tip. The section coordinates x and z are mass principle axes, with
origin at the EA, It is assumed that the directlon of the mass principle axes
isthe same as the modulus principle axes (used in engineering beam theory
for the structural moments). The CG is at 2 = 0, x = Xye Usually Xy and
Xo should be close. By definition then

. Ova 2w section mass
Saction
S O = S!\ Q= ©
5“““" & R CG location
and
51‘-0 A Bmm T section polar noment

of inertia, about EA
-14-




The blade pitch angle is © ; here undistorted, denoted by the
subscript "m”. The argle & is measured from the HP to the secticn
principl?éxis. It is then the angle of rotation of i#ﬁ, from the

HP axes.” The undeformed pitch angle is the collective plus the built
in twist O = Ou = Scun + O
where SOcen = collective pitch

Dea (D twist

Define ©caw as the pitch at Tppe SO e“.(f.;) = 0. The root pitch is
then &° = Ocaw . Inboard of Tp,e do not have the ©cew rotation of
the blade, but there can be pitch of the local prinicple axes with respect
to the HP, which 1s included in @4, for r<rp,. Note &vw ea)  1s
not necessarily zero, hence there is a jump in @ at Tea of magni*-de

The trim pitch angle is then

a“\\ - aﬂwc" ",f‘*
© =6 = 08° = Bwow C=Cga
Omo( ) <G

It is assumed that O is steady, constant in time, so independent

of W . Cyclic variations in ® , as may be required to trim the rotor,
are included in the perturbation to the pitch angle. We shall allow

the trim pitch angle to be large, hence &.,, and Oy may be larg:
angles.

The physical sweep and droop angles are defined with respect to
the blade outboard of the FA, i.e. rotated by ©° about the FA, Let
5.:‘ and 5;:3 be defined with respect to the principle axes at the
root (at the FA, r = rFA): these angles will be equivalent to Sga, and
¢Sn3 when there 1s zero root pitch. Hence the droop and sweep angles are

-15-
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The angles 5":,_ and éé:, are fixed geometrical constants. It follows
then that &ga, and S$ea, vary with the root pitch @° . This must
be accounted Lor when there are perturbations to & due to the rigid
pitch motion of the blade. In addition, the droop and sweep only affect
the blade outboard of the A, i.e. for r> Tea® This may be accouated for
by including with Sgag and SeAy the factor U(r-rF.A). where
' c»o

Wied = { ° Lo
We shall follow the convention of assuming the factor ' is present whenever
writing &¢a, or 6¢A3 .

From the B system (mth blade, rotating HP axes) to the o system
(undistorted BA/XS axes) there is
1) rotation Sk~ S, about €@ (small precone and droop)
2) rotation Sea, a.bout-iz. (small sweep)

3) then rotation . about Yy, (large pitch angle)
Hence

Tow 008,.Tg - 5wdn Vo + Tal (3ra-Sea, Yirm b — Son, cradn ]
-io = GO -z‘ +* ‘—uen:e‘ + @s E‘(&“"s&t\mew\ "8“3 &;“eﬂj
_.foS Jea = 'j&'!' 55\3'85 + (S, "SM‘\-\-:;

where &ga, and &M are based on 6.: = & , and are absent for
r <r“. We shall drop the subscripts "o" and "m", denoting the trim and
undistorted geometry, when it is obvious what is meant.

-16-
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Motion
S

The rotor blade motion (degrees of freedom of the rotor) is
described by:

1) gimbal motion (optional); pitch and roll of the
rotor disk.

2) rotor speed perturbation.

3) Then elastic torsion about the EA, and rigid pitch
about the FA,

4) Followed by bending deflection of the FA, including
rigid rlap and lag motion if the blade is articulated.

Gimbal moticn/rotor speed perturbation

Figure 9(a) shows the gimbal motion and rotor speed perturbation
in the nonrotating frame. The gimbal degrees of freedom are @.g and QGeg !
rotation of the rotor disk, in the nonrotating frame (S system), with the
same convention as (;.¢ and (’{., tip path plane tilt. The rotor rotational
speed perturbation is  Wg « The degree of freedom Ny 1s a rotation
about the shaft axis ':, } so the azimuth angle of the mth blade is really
Wae & Vg .

Figure 9(b) shows the gimbal motion in the rotating frame.
The legrees of freedom are fo and @, , given by

Bo = (Boc oAWa + (as hmWa
o= — Bac i + (Ros cos W

The main effects are due to 8@ ., the flapwise rotation about the Tg axis;
8¢ ., the rotation about g , only introduces a translation of the

hub duv to s, and x;, . The blade pitch ©  is defined with respect to
+h¢ hudb plane, so only the blade inboard of the FA sees the pitch rotation
due to &5 , and that effect will be neglected,

Blade motion

Tigure 3 shows the geometry of the deformed blade. The blade
defermation is described bdy:



- ™ - e . ... e Tp———
1) twist about the HA: &
~) deflecticr: of the EA: Xov g
3) ~otation of the sectinns &, > ¢3
The pitch argle ® , including perturtations, iz implicit in
the T,3,¥ systen; 4K are the principle axes of the blade
with no bending, but now with the blade elastic torsion and rigid pltch
motion in & . The XS system (f,,)‘f‘s )sz ) are the principle
axes and Ea of the deformed blade, including torsion and bending. The
tangent to the deformet EA is ﬁ“ ; the rotation of the cross section
from © t"\i is given by ¢y and ¢ :
4’;‘3+lb§'i = (e —%3)T — (% + %oe')i
= (ic‘f—’.gi\'
The blade position, relative the root, is then:
- -
€= )T 4 %o 4 BWE 4 Wiy + ¥y
= (';*ri"'“"!'?q’x\‘} + (rel+2oR) + xT+ zi
Y % %N ¥ ¢ Y
<, % < so } ¢ \*
S A ° N
A, & ) Q%J
o‘ % 4
We will neglect the perturbation of theradial position, o+ Xy =2y << v,
Blade pitch
The angle ©  1s the angle of the major principle axis of the
section (the x axis, chordwise), measured from the hub plane. The blade
pitch 1s composed ofs

1) €"(¥) = root pitch, the pitch of the blade at the FA
atr= r $ due to commanded collective and control,
control sﬁstem flexidbility, and mechanical feedback.

2)  Owele) = built-in twist; ®melfn)= O.

3) 8¢(f¥) = elastic torsion about the EA; gero at the FA,
©¢((pa,¥) = 0j only &g produces torsion shear
stress 1n the blade. '

-18-
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For the shank, T < Tpas elastic torsion is neglected, and it does not

see the root pitch ©® . Then 8n,(™) is used for the pitch of the principle
axes with respect to the hub plane iin the shank., There is no perturbation

to © inboard of the FA, the pitch and torsion degrees of freedom are

only for outboard of the FA, Since probably e.,,,,(q;;) is not zero, there

is a jump in © at the FA. So the blade pitch is

8%+ S +0¢ > e
S =

9. [ FFA-‘

O < G

The commanded root pitch angle is

9° = eu\\ -+ ecow
where

Ocon = collective pitch angle; the trim value, which
may be laxge but is assumed to be steady in time.

Sean = control input; time dependent, but assumed to be
a small angle; includes cyclic to trim the rotor;
and for dynamlics analyses this is the control
variable.

-»

The blade root pitch commanded by the control system is &% ; &% 1is
the actual blade root pitch. The difference ¢ 8°- &%) 1is the rigid
pitch motlon due to control system flexibility or mechanical coupling in

the control system (i.e. &3 effects). Hence we may write the blade

pitch as:
(Oen + Orw) + (B°—0%) 4 B + O ©> e
e =
e = Bon + (9"-0") + 9w ca “p:
Srw CLRA

Now the pitch ©  may be separated into trim and perturbation
contributions:

aﬂ'ﬁ'g o>Cea
=94 82 + &° c =
Ova r(P’A

-19-



where the trim terms are (as above)
Dot * Ow

O+w

and the perturbrtions

(% %) + Duew + B¢

LV )

e = §° = ¢9°— o) + Oow
o

The trim value of the pltch is .. , composed of Oy and One
it is a large, steady angle, The perturbation of the pitch angle

s & , composed of the blade motion (8~8%) , O . and O
all are small angles, so 8 is small. For the rigid pitch degree of
freedom we shall use ) defined as

~ o

po= O = ce°— %) + Ocown

and for the elasiic pitch e an expansion as a series in the normal
modes (described in the sections to follou). Note that Py is the total
rigid pitch perturbation, including the control O,. -

-20-
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Coordinate Frames and Axes

S System: nonrotating, hub plane frame
rotation Wu~90 about fs ‘r"qj’

B system: rotating, mth blade, hub plane \x,.
@ 2voit ¥@

®qa about —g "“"L,,

Ws about §u <

H system: hub frame h:tfb .
b ]
A, abo it T Pre ey
FA system: blade fA (EA for r < rl-‘A) Se

~&ea, abou* Tea
—8FA; about ¥pa ::'“
EA system: EA outboard of I'A
® about —SeA Piag
— 8, about Yga /""x;
blade system: principle axes, including torsion

&x about T b‘s.

by about Y "’-\J
XS system: principle axes, torsion and bending
B system
o = caaW. Tg + A ‘35
—
-f‘ = ks
Blade system

From the b system to the blade system, there is fivst rotation
Ga +dea, - Sea, about Za and rotation Wg— §tay about 'f. i then
rotation & about 3u » Hence:

¢ Gn IR N PN -



PR R s <o v ne

-22'- cesr© fg - ma'@a
+ Y8 L (B + 5FA, —Ggay YAmD + (W~ 861 ) coa® ]

56 Tq + coa ® Yo
+Sa (= (@o+ ben, —$FAV cas @ + (g BFag) B |

=
T= Tea = Ta - (=) Ta + (Be +S'FA.-AFMJ~€'B

» the Snz and SFA, terms drop; in particular:

= T = Ta - MsTa + (e +SF~\€Q

For r < rFA

XS _system

Tyg = T+ ‘btf
Ias = 'j - $aT+ 4, X = I+ (nei+2eRY
-c.gg = t hand ég j

Undisturbed blade system

The undisturbed blade system is 1’,’3’ ,I) without (55 . W,
or the pitch perturbations in © (and Sea;, § §0o; based on 83 =®ww ):
hence:

Co 2 cadO 'e. — "Meui. -+ T.L(&“.“"A;\MQ& —é‘h, wO-.]
Ko= tw0u Ta + 2a0.%s + T EXSEA, - §PA7) w00 O ~ §Fa3 Fm O]

To = & 4+ SeayTa + (SPa, — Snﬂiﬁ

Now since the blade motion & , @, and s 1s small, 1t is possible
to expand the blade system in terms of the undisturbed frame:s

2w Ty —BRe + Ja [ (Po-8"Spmy w0 + (%48 5ea;) 0t 8]
‘ﬁ = fo *g'e. -+ j‘ [— ((‘0* 8’8“,\&“9 *(‘&*8.8“‘\‘0‘0]

There follows then:
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P, TN
('l.of‘f ieﬁ\ = (noTo + XKo" - % (?o‘t’.o —'*o.i,)
v -~ ~) -
+ Ta [ Or+& 8a V0 ~(Be - 9'3%)\—_3].(,;3_.,,.1.\“\
which is an exmusion of the bending/torsion deflection of the blade

in termms of the undisturbed axis systen.

Dlade position, velocity, and acceleration

Position

The distance from the gimbal to a point on the blade secticn is

7:‘ = - 2:;\'2\ - %A Ty + rFA"j’?A —]’sAS > \"‘S +\o't+ioi'f‘f,s+!?xs
v Y
’\‘ :'\ . C\\% ‘:}',' 'f/‘\" \A‘:}'

S ‘, 3 v‘& NS % % b

X e N W
% %
3,

which may be written

Rz Tal—wea — @O0 ~ Cea dFa3)

+ T8 (2ea@a — wpa NsD
+¥g C— 2ea 4 rpp Og + 5, S"M.)
+rT 4+ (wet* 2R + (2T +2X)

= Ca (=%r—TEABe = Ws 4 (C=Tgn) S¥ay )
+ 38 (T + 2a Bg = xea Vs )
+%e (—aen +3pa 84 f'(vr.ﬂn.\—(f-&‘n\SnQ
+ (T +2eK) 4+ (¥ +2W)




Veleocity
The velocity of a point on the blade, relative to the rotating

frame (the B system) is:

e = (%3?)&3 = Ca(-2¢a0a —c W)

+ T8 ( 2ea Ba — xeaWs )
+¥a (xea e + éo D
+(C-Cep) &° (—Tp 8PA, -Y)o SFA;\

-+ ( (\(o-b\\-f + (e +})‘i 3.

vhere . .
((‘Ius""yi + (a4 3€ D 2 ( xeCo + 10‘603
-+ é ((!o*i)to —(¥.+$)~i¢)

Acceleration
The acceleration of a point on the blade, relative to the rotating

frame, and neglecting the squares of velocities, is:
- [ .
e = ('g‘:Vr}a = <2g (= 3ca O ~ W)
+ Ja (2ea @o = %ea We)
-FQB (xea Bg + f‘éa)
B
+ (F- ) 8° (—~Te $rry —%a S0,y

-+ ((x.-m)'e -+ (e +%)‘2 b

where . .
(C"O*‘)f""to‘rivi\. 2 (neto+ !oto)
+ 9 (Re+)DT -(%*I)f \

Acceleration of the blade

The acceleration of the blade is required with respect to an
inertia frame, i.e. in the S system. The B system rotates at a constant
angular velocity fi- Stf. with respect to the S frame. The shaft
motion is composed of linear and angular velocity and acceleration of

-2
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the origin of the S frame (the gimbal pnint at the hub center of rotation).
The acceleration, angular velocity, ani angular acceleration of the U

system, with respect to the nonrotating, inertial frame, are:
. -
o . “
CGe = l\-fs *5\0‘55 + 2y ‘S

G)o 3 iy Ty + 5-'3 ji "’&Efs

"::5: = &« Tg + u313 -+ &%is

S5 0D 23
It is assumed that a s Ve and e Aare all small quantities,

Given above is the motion of the blade in the B frame, the acceleration
and velocity of the blade ?r and Ti;’_ Now we shall derive the acceleration
of a blade point in inertial spac< ( 3 ), in terms of the motion of the shaft,
the rotation of the rotor, and the blade motion in the B frame. Fronm the

result for the acceleration in a rotating coordinate frame, there follows:

S - -

P B - D » = ~
S=8, + Aes + 2BewNeg + Wo %{ae ne) + e >

- Y
wnere 3. s and Ve s 2T€ the acceleration and velocity of a point in the
’ ’

S frame. The B system rotates at angular velocity ﬁ - S‘Lfg with
respect to the S frame, Hence with S2 constant and no angular acceleration
or acceleration of B with respect to S, there follows:

-2 D - D
-3,’5 = Re + 252wVe -o-ﬁ\t (S2x?)

S = =D
\]tss - Ve + StaeE

.Y S
where a. and v, are the acceleration and velocity in the B frame. Thus:

- - -
2= i.+3’c+2ﬁnve+§$(n‘r5 R

- - - 2 -~
+2'\:"o\'3r -+ 26".*(3”!.:!“)+w.ﬂu.1w)+u.:r

Te first order in the velocity and angular velocity, this dbecores:
Y - D Y - D
D Qe + B¢ 4+ 2523V + (ST uF)

- o
200 % CSTx®) 4 TEex?
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I Boprame

The six terms are respectively: the acceleratior of {he ur’gin; the relative
acceleration in the rotating frame; the relative corlolis acceleration;

the centrifugal acceleration; the coriolis acceleration due to the angular
velocity of the origin; and the angular accelerztion of the origin. In
dyadic operator form, and with _T{‘ Sz'y?c » this result is

S = Qo + ar o+ ZYLCE’cwﬂec — s (‘Caffn"'jijﬁw“z’

+ 252 (R - Tadt. — ¢yt

To obtain the forces and moments and equations of motion, the
acceleration is nultiplied by the density of the blade point ( dndr ) and
integraied over the volume of the blade, to procuce the total acceleration
of the blade.

Equations of Motion and Forces

The equations of motion for elastic bending, torsion, and ri,id pitch
of the blade are obtained from equilibrium of inertial, aerodynamic, and
elastic moments on the portion of the blade outboard of r:

oW, -
"B I
where “E = gtructural moment on deformed cross section, on the

inboard face; so - ME is the exterml force on the
outbosrd face,

!‘lA = total aerodymamic force vn blade suxface outboard of r.
"I ® total acceleration of the dlade outboard of r.

KE is a general elastic constraints from engineering beam theory for
berding and torsion; from control system flexibility for rigid pitch;
hud spring for giabal motion; or it is the force or moment on the hud
dmtothomtor(so-nsuthcfor«onmmtor) "I is the angular
acceleration of the bhdo outboard of r, about the point T (r)x

Mg, = S L Py ~PceI B am&.s
-26-
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For bending, erngineering beam theory gives
> ) =22 -
Mg - M{f -+ M{i = Ty + K‘xs)ME
- D
So this operator is applied to MI and MA alsc. For bending the moments
about the tencion center X, are required. Then the desired FDE for bending

2Y 2y
s obtained from 3=y M .

S
For elastic torsion, engineering beam theory gives Mee = ‘_?n; Mg .
- 2
So this same operator is applied to MI and MA' For torsion require moments
about the section EA (x = 0) at r; also, elastic torsion involves only

r > rp,+ The desired PDE for torsion is then obtained fron :’%_ M~ .

I
The equation of motion for rigid pitch degree of freedom P, = e
is obtained from equilibrium of moments about the FA:

- o .
MEA = Tus (R Y oM (TR

>
where M is the moment about the FA (x = 0) at r = TeA® The elastic restraint
from the control system flexibility gives the restoring moment atout the

FA, completing the desired equation of moi.. .

The equations of motion for the gimbal degrees of freedon (ZM_ and (345

are obtained from equilibrium of moments about the gimbal:
Mu = Tg-M
Y My = Ts- R
where M is the total moments (from all N blades) about the gimbal
point, in the nonrotatiig frame,

The equation of motion for the speed perturbation degree of’ S
-~
freedom WS is obtained from equilibrium of torque moments Dz3-Mza = Kkg'M
-h
where again M is the total moment about the gimbal point.

The total rotor force and moment on the hub (at the gimbal point)

-y -
are obtained from a sum over the N blades of F< and M > the force

and moment due to the mth blade:




{
:
‘
3.
4

= pdR S )
= -
F wil-‘
-~
- D (W)
M = I VN
w—s)y
(w> = ()
Since - F and - N are the forces on the blade, there follows from

force and moment equilibrium of the entire blades
d 2 - -
-—_ -+ PA = Fx
- - -
-—-I:\( ) “+ M, = Mgy
The hub force and moment are required in the nonrotating hub plane frame
(tre S system); the components are defined as:

S
= WTs + Y3s +‘Tf5

¢
= = My Ty + M,‘Ss -—Q-as

A
Note M produces the gimbal and rotor speed perturbation motion, if those

degrees of freedom are used, but it is also transmitted throught the gimbal
to the helicopter body or supporw.

Aerodynamics
The aerodynamic forces and moments on the blade are obtained

from the integral over the span of the aerodynamic forces and pitch moments
on the blade section. The aerodynamic forces and moment on the section

aret

F‘x in hub plane, positive in drag direction,

(Ta directiong‘: at the EA
)

li‘z normal to the hub plane, positive up ( kg
direction), at the EA

F. radial, positive outward ( ~yq direction),
at the EA

Ha moment about the EA, positive nose up

The forces on the section are Fx, Fz. and Fr } these are the component
of the aerodymamic 1lift and drag forces in the hub plane axis system
(the B frame). F_ is here just the radial drag force; the radial comvonents

-28- ;




¥ -

of Fx and Fz due to tilt of the blade when it is bent are included
exI.icitly in the results below,

The aerodynamic force on the section, at the deformed EA, including
the effect of the rotation of the section due to bending, is thus:

Tanre = Fuin + Faly - Te Frs (FxTe + Fa ¥ )
+ F}ff:s

= Fuva + Fpia
+Ta (Fe = Fa( B+ S0, —Sra, 4T bt en®Y )

and the aerodynamic moment;

~

Mwo = N\qj)$5




Equations of Motlon and Hub Forces/Moments

Bendimg
The equation of motion comes fronm
T
T () Q. aQ =)
aan Me + Mz = aer MA

-
where ! is the moment about the tension center (x = x,,) at r, and

‘/\_)A“')z (tdc*ii;;})\—z = (T.’f-l-ii —-(xo'c-f-‘tai )'3’ )TV\)

Tnertia: Considering first r > Top the moment is

) \ N
Mz = Scsm“ (® ‘5%1 - c lrx‘o ) x &”“&‘g
- \ ( -“33’ + (ﬁ.-r:)'h'-f-(%--ri)f '} S
- S(\ \ S "—’(('Ao*hb-i "f"ln'ésh- Xa &M‘a%
S0 >
3

\ -
= —(‘3*(\.'¢+%.i+x¢,‘i\'>*S‘_Sq&m&g
— S(*'?-"\'?‘-i -—x;‘l)xﬁ&m\

(1 4
q

T
— [ (2T + wREXTY xg‘( Sfc? &»QS]
— [ §Ox2 +2E=xT)= R a7’

. —(xe+nVk
)-ﬁ = S.(S Y_ * j);c-a‘:ngl*;h\r] -'E:?Slm&.%

v

L

H
H
i
3

-

S g vade e o
[N



bt () Y bz/t\.:- ~e+%'i3'3";:1:]"
sE = (TR TET  foatee.

r'&
= "3)‘ QE’&'» v
+ [ 5T -xBaxR)3 R an]

\ > ~ -V
+ [(%0.8 —X.ﬁ -k"ﬁ-)" S‘- S.S.G v uS J
~
|~ VT — (Ro+4, K - A
v (‘%.*'tl .
— [oera®) Sr[ - BT = xR -scf’\r] * &MQSJ
We shall neglect the last tern in this result, ((x2+2.K*"Y T‘x‘xj" ,

as order (c/R)2 Smaller than the first term. Including the case r<r,,,
which only introduces an effect of droop and Sweep, the result is:

T _, -
aé'r"-M(;’.’ = T 5‘ -
+ [ §e-rR +x®)3 R 2y’
\ o y?
-+ [(tgf—ng‘-xcf)v S( S‘j-q &M&SJ
— 8(o=tenY T, Tat Sy ) o) 3-8 Qg

where &) 1is the delta function, i,e. ap impulse at rag,

a) shaft motion: with F¥eys have
B=3 +2R (B P -RR)3, — 2«3
= & 4+ 2%~ (Vo Ta - JeX) B ~  Tax)

So
R
%2? S wyen? = w (Ta T - Ty Ta) 5o

+ 2Rew Ty e
+ae (BT + R G




b) relative acceleration:
1<)

d M

I~ T S'&’.—&m
3t

wa F—-'E’c (-ﬁAéa ""'Ifs) 7
+Ta Cren &0 + t‘@»o5

+ (2T —%oRY

— Q (&s+%=dT + 2%

— 6 (c=rcgd) (5.3 Ta — 3, ﬁ;)

L

c) centrifugal acceleration:

~
2 = —5t* (Tgla + TaIpD T
T 3e2 = ST [—xea-2eaa ~ e 8y +Ta - ()T (2e923F ]
+St'Ta v/ Be +4, -8
-j-?:' = — Stte
Se P [ 4 >
PR _ [(ReT —xe®) §, g8 ] 4+ w¥g Bp (2eT-%K)
¢t — [(8 (x0T + 2% +x.2DY SL‘SW 1’

+ [(e=x) 8 TewmJ? _ w¥a S E’g-(x.i-r%of*“:f)
—S(e-ceA) 8° (§;le -6, S‘“.A R~ O

+8 w[eTa ~ Cea 52

+¥w2a06 — Toawrpo

— 52t [ Lo IRem " — [ (xR (g 27"
-é(“-"A) ¢ SII,. g 8312.) ‘f‘n s\ua.s

+-a"“ [‘F\ "*".“81 —lxwej
—T8 wr (§=§,)
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d) coriolis accelerations a=2 Qi& "ef
Se j-ﬁ: IS?.E—P'.P; —f“(%o'e-\oi). }

-~
I = 252{1?35 Je-vr
S - J 3 -d \*
+[=(3,-82)%0 + ;K [~ ¥ ke (2T ~K) J}
For jﬁ'\r » 1t 1s here necessary to include the effect of the change
in thefadisl position of the blade due to bending:

iKY € v _ _ fa rd
Ar=—j’g* (%ol +20¥ + x 2T ) (¥ —383)
1), [ +(3o + &= 5; DV 3

. 3% = — S: (2o =%sEY” . (20T —%e® — xR )’
— (25T —#o®Y - (5= 8778 = 3T
— Qe [-2ea+ T - (262 ~%eB = xxX )+ e §) - (r-,,) ;]
— ¥ [*ea +Fa- (ReT—re¥on®) — (= )63 ]
Tem
27-.5(1\: 252 F__‘g‘ - S: (;,‘f—%oi{ ‘. (2eT—%TB-3xzT Y
act —Va w@e [~2ea+Ta - (2ot-xaRmax® ey = (o )62 ]

— o v g [xen +¥a - (200 cxeB e D) e 837

— L3I (et + Ry - (2e2-%BY D"

— [@EC-mT xR S:- (3% + ¥ (2et-%ek ) ) Qg]'
4+ S(e=pad (5,Ta + 5,%p) g',“(s s+ Ka (2 -wR Y ) i)
+ = (3=8) Ix (et ~xoR) + ¥ By )




elastic:
WAL
o Me
art

= [ (Eltz f‘e + EI-“.ﬁt) (%.{_xOQ )" ]"

-+ [(szf—e —EZ;,'@)B:“ e; ]"

aerodynamic: The moment about the tension center (x = xC) at r dne to
the blade loading at the EA at .S :

T\:A = S\( (? \%» - ?liyo Y » Fouro &S

\
¥ g (5= (Fate - 79 8y
® )
>
32—,::‘:’ = 'fx-ém = F%fG - Fs\‘-ﬁ
el

Elastic torsion

The equation of motion is obtained from

-) P}
-_—E;; hﬁre - §%.h‘ﬁ=_ = - :;;'“rl
-
where i1 is ike moment about the EA ar r, and

-> v L4
F 2 _ 2 . .
:—‘,er ;;.‘Ss‘-M- jsﬁr -b[(x'd-r%o‘i) =]

inertia:

\ - < -~
T:z: S‘.) - c‘-\s‘l— \roo )*“&“&‘S

\ <O T + (xe4xdT +(a.+g)’ﬁ
= S(‘S &.(& — (1e¥ +2E)\r ]xz’&u&&

Seo %Er ] _(-g-&-(u.-e-r%oi\')x S\(S'&&M&S
—§xt+ 2RI Bam

-



ve ¢!
é.':"z: = S(x’ﬁ—%i\,-i’am — (25T =%eT) 'g((g—ﬂsgaw-ﬂs
S
e xst 422 §aR -22) TR S

w (Re+2)T — (ho+ Y% ‘lg.a’&-.
— (xoT+2¥D S(‘S ‘L —~(ReT=%oR e AS

The ONE for the kth torsion node of the mth blade is obtained by operating
)

with S“cm 3‘(...53_" ; where jk is the elactic torsion node

shape. It is most convenient to apply this operator at this point:

5:_”3 ig‘ (xe-27)
- S;AK wl2et =X Y (e-0) &g\i"’&*&f

-
EPER DR TEN T A e o

\
- Sq.,,}" (Re4)T - (o +d B T 280y

o
4.(;,{'*%'{3 'S‘-S‘_ _(.‘.‘.‘.-\.i"r' 3

and we shall use the notationi

Ky = ¥ - S:_“ 3 (et -%e¥Y (v-8)84
a) shaft motions

S‘Tr 3 G0 = (Sc‘-,fiv- “‘&"3 (1gCa +Caka) 3
N

a¢€
+25L (S:-.ﬁ;'““\‘fﬂ Ja- =
+ ( S:_ _x" fwna-fy (t.t’i "fl%y E:
1




b) relative acceleraticns
S‘ oy = ( S‘m‘iww\ (~2ena T8 + xea B E&)
Cen ¢ = q’ _e + .- _%3
+(SrcA¥v_(’w&f3.(—- s La (3‘.’

\
N vas

<+ S\W“i§¥. (%o-e-‘ﬁof—%:i\ + ;K‘;] é -
o SCF ﬁ‘_'(sl‘f‘ -+ 8)-'2«3(('-.(}:‘\ .e.ovh&f
A

\ .e
- srﬂ ile T2 &r

v (%o T+2:X% Y wir

\

where X = sz#il &~ = section pitch moment of inertia, about EA,

c) centrifugal acceleration: neglecting a number of terms due tc blade
torsion and pitch (of the same order as the
propeller noment), compared to the structural
stiffening; there follows:

\
5“9,3‘ Bst:: W= -5t [ - C g;h-\?"- “"““'\"“6 tea 0o
RN
~( S’rny“"“ u\ :€6 e
M S:T'A !&s =2 (wot® - #u'0) &
- S:-..,‘fwtu T (x + 2% + 15w e
g\ R (2T ALY R Xgwmr ‘ o
~ e ‘i-(-.fu.i)"-(e.t—x.i)s‘.s"j
+S‘ i (Io‘e#loi3‘i'lx\~‘ Q¢
‘s * - C(3e *!fi)"- S: (bf“*.i-‘it):Q&

+Sop V- OO )R (6= 3] mle

-36-



\
elastic: using T = St S( .Sm QS ,

2ME _  (GT 4kt (-8 + 0% eTee, |
ocC
+(oh G At geag Y
+ [ome(Exue K mExzgp D) (T2 Y |

aerodynanic: the noment about the EA at r is

- \ b (R=-) T+ (3, T42eW) 7
Ma = Sr Ma Jxs &S + Sr {. ’)—(x.'€++td;)2|r ]’F““QS

So bfﬁ ‘
S-‘:Az “‘quls - -jli % S‘_ ﬁma-s
- v
3”:‘.\ - 3-‘_ f;s'ﬁk = -Sli’ %"’:‘\ -+ (‘o'f""OiB 'MA

2 —prg — (%‘_e__".e\w ,S\( (&—r)(F‘T’Q +FQ€‘X&S

thus
\z”ﬁ*m‘-—s‘ fMabc '@ AAR WY
Srﬁ\y. ¢ - Coa whade 4 A vee R A
- ~
whers Y\M=\Iu- 3;‘:.1



Rigid pitch
The equation of motion comes from MF Ag 4 HFAI - MFAA , where

Mg, = j’“(chS ‘M = (36* +(’Io'e+%.ix\mA\ *M

-
and M ic the moment about the FA, at r = rFA'

inertias |
. | S -
Mz-‘- \cms (?‘““ -— f\r"‘.. 3‘“ &“*&r‘

- S‘ % ‘. (r-f-ﬂ:) 4 (ve+WOT +(i-+i)'¢- ]la) Qe QL
R — txel +2e R\,

So
(!.n)‘f-l*-éﬂi -ibxfﬂﬁﬁ‘.)(f-fm\] .

\
Meny = SMS @, — @Vl (F- ) | 1T T

v - ¥
*5‘@ G (ot U bt et

S . (z.-o!)f-llo#v\g
+ (-5 § + @etmn Vg € m;g

T8 Swde

and we shall use the notation:

-i. a —(a8-wXR-%x®) + (S{eu + 53.it3 (c—Cra)
+ (T —'Aoi\ \m +(2eT —’.is' )m (C~ rﬂ)

a) shaft motion:

{. wu\ (¢t -ﬂ&ﬂ}fo

\

Mon = — (Sr...
—252 ( S‘m.",“ "‘“‘-"3"" -5

- ¢ S:."‘g. o B Cfgi;—faf‘y&
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b) relative acceleration:
- o 2D o -
MEA = — CS:‘,.X"‘”“) (-2 ©6 b +XFA O ks )
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\ - - _ s g o
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\
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c) centrifugal acceleration:
T -
Mea = - ST ‘ QS‘FAXQM &r} ‘g Zea B

+ ( S\‘.';i)o Cwa 9’3 'Yg B
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Tea
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zerodynanics: moment about the FA at rM i=

2 ' \ «-m\:’ﬂxdﬂoﬂ] =
MA 2 S Mo Jus &F +§‘_FAK I D e hd

Seo

\ \ _ v
Mea = S%M‘a" - SM(C,-e.,...FifsB-Y% e

JN
where -\ZAo - Xo —\zi

elastic:

The aerodynamic and intertial moments about the FA are reacted
by moments due to the deformation of ithe control system, due to commanded
pitch angle, and due to feedback (mechanical or kinematic) from the blade
bending or gimbal motion. The restoring moment about the feathering axis
on the blade is —Hmn: it 1s given by the control syster flexibility, i.e.
the elastic deformation in the contrcl system ®.. tines the control
system stiffness Kcon' Hence:

Meow = Kean @ec ™ Keon (8°— 0o + ;“h'\'. < kP(,(ic.)

The q, are the bending degrees of freedom, so K, are the pitch/flap and
pitch/lag coupling, mechanical or kinematic feedBack due to the control
system and blade root geometry. Similarly, Ky 1s the pitch/flap coupling
for the gimbal motion, For the rigid flap notSon of the blade, this
coupling is given by the $3 angle, such that K, ~ tandy . Fora
rigid control system, xcon —p b0 , the rigid pltch equatic: of motion
reduces to

pom &8° —» Ouan —~ g\""\" - % B
So Py becomes just the control imput, and pitch/dending coupling.
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Now we write the control system stiffness Koon in terms of the
nonrotating natural frequency of the rigid pitch motion of the blade, g ¢

\
kuw = < SCFAIB &"') D:

Then:
- Ocow
’V\FWNE = Miow = (wSCFAJ:G,diﬂ:)‘JD [ P
+ ke g
+ 'qul @sﬁl :]
Force
The net force of the mth blade on the hudb is
J L
( Y ﬁ -Fz
where F is the force due to the blade, at the hub,
- \ -
inertia: e = S:S S Q-
= S Vo w

a) shaft motion:
Bo (Somd) Fo 4 252 (§,omir)(FaTe- Jeka )
+ (§emar) (Pata-Ta%a) B
b) relative acceleration:
¢ et (T B + g B + 5, T+ 2EY war
c) coriois acceleration:
€= 2.5 5o § Ko xVr Suwiar
= 25230 [~ (Sora) ¥ 4 § et +2el) ]
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d) centrifugal acceleration:
\ -
_F>=' -5t S°§ (2gTa +3’ng) € QwmBr

= -t ~f¢ L 3:, (- ¥eA + (= G D= ]
+ 38 (Soemtd =g ( S: cwfe) My

+ Ta S),"-’B' (ke +20T+%z2) v 8

aerodynamics:
A = S\oéw“ &8s
= S'c ‘_Fxfl + Fitk
- TC ( Fr - Fi (G@ + 8.- Sz ‘\'IQ ~(‘s°‘i+2o'i\’ )\]&f
Moment

The net moment of the mth blade on the hub, about the gimbal point,
iss

-—)(V‘) — — -
— ' o
inertia: Mg = So S Cxa Qs

a) shaft motions
M= (S ewnd) (g -yta) %
+252 € 5} ermae) o Forh
+ (! ctm e (g0 + T k) 7
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b) relative acceleration:

7\7\ = r (S‘o""‘&") (zea éafs + XeA éc, 'ﬂs)

-+ (S\’rlwax'> ( k@ q’s +i. (3@)
+ 5o (22— xe®) rm &
\

- S'?A

. \
— B8°(S53Ts - 2% S‘.Fk(r—rpnrw&r'

© ((xo+wx)T + 2oXK ) rwmdr

by

c) centrifugal acceleration:

2 =2 2 1 2 D
T ST N-F = -3¢ f;g?'ga.r'
2~

(-Tg G-

_vex(.-ix(ﬁx?‘\w
=S -5

[ ¢l (—epn e 5, — Ce-a) 82 ) rmle
+ (S, tmar) 8o
+ S Koo (reTH2R 43zl) rmite
+ g‘ms Ko - (22 ~%eR =~¥zR) rmtir

So
= '

\
~8° sn; (Sepa (= R i)

L
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d) coriolis acceleration:

2x3 = 25t [ Fax? (¥ +Ta (2T -%RY)
-‘-f'ng 3"-#;]
amd

Sar¥ = ~Ya (—%FA+ (C=FEA) 8, ) + TR (~2pa+e§, - (- ) 52 )
+ (et~ %c'i"%x.i )

25L +Tg - (2eT~%, "zi)

3L
I
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fB Sa (rkys +.¥>a‘(x.f+%a1’n\ \ [‘2“*" él-(r'riﬂéz\lwﬁr
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+ S'.fs. (22=%oR) (=814 (F=r)§ 2 Ywmbir

+ S‘o To-(22-%eKY (Xga+ G 83 wBr

+ S‘OE’Q (22-%oEY Ko+ (2eT-%eR =¥ X) we B
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- + 08 — (C=p )8y J e Qe

aerodynamics:
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Gimbal
The equations of motion for the gimbal degrees of freedom are

obtained from the Ts f' s components of ﬁ =z Fxlﬂ s thus:
? oo+ =T
“Hs I A

Y
vhere MHS is the spring and damper moment at the gimbal, reacting the
rotor applied noment. The gimbal sprins and damper are assumed tc be

in the nonrctating frame. Hence:

.M)us = Ts ( %g @os-*c-q.éos)

- Ts ( 6 Bec + Co @ac)

S
Taking the € and 3’5 components of !, the gimbal equations of motion
are:

My + Co Pac+ Ko Bae =0
—_ My =+ Co(ias + K¢ BGes =0

We shall write the gimbal hub spring and damper as:

kaz %zonz<°¢z "')

R
vhere Lg = S, LAY V) and ‘)6 is the natural frequency of the gimbal
flap motion.




ilodal Equations

Bending

Consider the equilibrium of the elastic, inertial, and rcentrifngal
bending moments. rrom the above analycic, these terms give the

honogeneous equation for bending of the blade:
LA
C(ET2zeC + ETxx RE) (T =%)"Y ]
\ - *9°
_ s2* LS .Sw-a_s(g;t’. ¥oR®)' ]

_.:S-J-L WE"('. (t{f-—\‘oﬁ)
-+ (%oT ""O‘iso. = o

This equation may be solved by the method of seraration of variables,

1t
Writing (26— Yo%) = qm e

it becomes
\ T D ~ 4 o
v 1 -~ @ —_ = 0
CEx ") - s [S.-S"“j 1] = w3t -39
This is the modal equation for cour®ed ¥ ]an/lag bending of the roiating
-
blade, It is an ordinary differential equation for the mo'e shape vl(r) :
this mode may be interpreted as the free vibration of the rotating beam
at natural frequency v .

This no’nl equation, with the avppropriate boundary coniitions
for a cantilever or hinged blade, is a proper Sturm-Liouville elgenvalue
problem, It follows that there exists a serlies of eigensolutions 'v'{‘(")
of this equation, with corresponding eigenvalues ?: « The eigensolutions
-- modes -- are orthogonal with weighting function m;: so if 1 #k,

\ D, 2
Yo i "r™be =0
These modes form a complete series, so it is possible to expand the rotor
blade bending as a series in the modes:
o -
2eT ~%xok = T N (+) ‘l‘(r)

Y

b



We shall normalize the bencing modes to unit amplitude (nondimensional)
~)
at the tip: \‘Z“c')‘ =1,

Torsion

Consider the homogeneous equation for the elastic torsion motion
of the nonrotating blade; i.e. the balance of structural and inertial
torsion moments, which from the above amalysis iss

—-(Gj e;_ )V - Ieéz =0

We could consider the equation for the torsion motion of the rotating

blade, i.e. including centrifugal forces and some additional structural
torsion moments. For the usual torsion stiffness of rotor blades these
terms have little effect however, and the nonrotating torsion modes are
an accurate representation of the blade motion. Solving this equation

by separation of variables, write 6',8}(")!:“‘ » SOt

~C@T Y'Y ~ mgut} =o

This equation is a proper Sturm-Liouville eigenvalue problenm,
so it follows that there exists a serles of elgensolutions ?u( ) , and
corresponding eigenvalues w\f (k =1..,00), The modes are orthogonal
with weighting function Ig , so if 1k

S\m~ i"tk o - Scrx0

The modes form a complete set, so the elastic torsion of the blade may
be expanded as a serles in the modes:

[
8 = T e il

These modes are the free vibration shape of the nonrotating blade in

torsion, at natural frequency Wy . We shall normalize the torsion modes
to unity at the tip, Jy() =1 .
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Expansion in modes

The “ending and torsion motion ¢ the blade is now expanded as
series in the natural modes. By this means the partial differential
equations for the motion (in r and t) are convertcd to ordinary differential

equations (in t) for the degrees of freedom,

For the blace bending we write

oo 2 ey
C‘?.‘e""o.i) = (io-f~¥o.i)‘h."w‘ -+ i,% ﬁl(t) v(i (¢

vhere 3?; are the rotating, coupled bending modes defined above, These
modes are orthogonal, and satisfy the modal equation given above. The
q, are the degrees of freedom for the bending motion of the blade. It is
assumed (for the inertial terms) that the trim bending deflection is
steady, independent of time; ani when the substitution for the modal
expansion is made, the subscript "trim" will be dropped, as that is all
that will be meant by (Rei-¥ok) then.

For the blade elastic torsion we write

oo
e = .g-‘ Pl(txxt(fy

where '31 are the nonrotating elastic torsion modes. These modes are
orthogonal, and satisfy the modal equation given above. The Py (12 1)
are the degrees of freedom for the elastic torsion motion of the blade.,

We also have the rigid pitch degree of freedom
o= 8= (0°-—0%) + Ocn

which is the total rigid pitch motion of the blade. Since it is rigid pitch,
rotation about the FA, it has mode shape 3§, & 1. Thus the total pitch
perturbation of the blade 1s expawded as a series: i

Co
@ = € e .

{tmo
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For the blade pitch © then, the mean plus the perturbation is

O=Pu+8 = (O +Or) + '{-PL}"

The subscript "m" on the trim pitch angle will be dropped when the
substitution for the modal expansion ir made, since that is all that
will be meant by & then,

rnonrotating Frame

The equations of motion and the hub forces and moments are
in the rotating frame yet. To get to the nonrotating frame, we introduce

a coordinate transformation of the Fourier types i.e., introduce the new
degrees of freedom:

G =

Am
&
S

tw)

W,
@v\e: % .E;\ A o8 T
~ ) .
@“sg -&; i—s\ '\L FAm WA,
g ) v
op = £, 4™ e
v

where (3o is the coning mode; (@t E‘ @is the tip path plane tilt coordinates;

and @!}‘ is the reactionless flap mode -~ for the out of plane bending
of the blade. Thens

(4

q

where the summrtion over n goes from 1 to (N-1)/2 for N odd; and from 1 to
(N-2)/2 for N even; the (3.; degree of freedom appears only if N is even.

w? = (S. < § (ﬂnc. (Y- VN . -+ (5“, S\un“’_} -+ @g (_'S‘

The quantities (3, ,@ue., Buss and (!' are degrees of freedom,
i.e. functions of time, just as the quantities -‘“‘ are. These degrees of

freedom describe the rotor motion as seen in the nonrotating frame, while
the @™ describe the motion in the rotating frame.
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This coordinate transform must be accompanied by a converrion of

(m)

This is accerplished by operating on the equations of motion with the

the equitions of motion for q fron the rotating to the nonrotating frame.

following surnation oper . rs:

z wa
i: 2 aea ,CD \Qw - ...) . w -'.. i ewe -

e

Peference !+ rives more ‘etails of this transformation.

Similarly, the degrees of freedom for the blade pitch ar.’ ginbal
notion are iruinsformed to the nonrotating frame. The corresponding degrees

of freedom for the rotating and nonrotating frames are:

rotating nonrotating
() (]

°|.‘_ 0 31C 1S
(v (48]

P; eo)lc)\s

@ev )% ,\"s (S(.c. ) @Gs 5 WS

When the transformation of the equations and degrees of freedon
is accomplished, there is a decoupling of the inertial and structural
terms as follows (for N2 3):

a) 0, 1C, 1S degrees of freedom; Get ,(3., , and Wy
and the rotor chaft motion.

b) 2C, 28, ... , nc, ns, ¥/2 degrees of freedom (as present).
The first set couples with the fixed system motion. The latter set is just
internal rotor motion. [or N = 3, the first set is the conplete description
of the motion of course. Nonaxial flow aerodynamics couples 211 the rotor
degrees of freedom and shaft motion; i.e. the two sets above are coupled
for helicopter forward flight or conversion mode operation. For axial ficw --
hover or proprotor airplane mode crulse operation -- the aerodynamic terms
decouple also.

We shall assume here that the rotor has three or more bdlades, N3 3.
For M = 2, there are periodic coefficients even in the inertia terms, so

-£0-
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that is a special case. !or the case of periodic coefficients in the
aerodynamics, i.e. helicopter forward flight or cunversion mode flight,
it is necessary to specify N; we shall take N = 3 for that case. (The
periodic coefficients depend on N.) For the case of axial flow, or for
the constant coefficient approximation for the nonaxial flow case, the

equations obtained will be valid for all N greater than or equal to 2.

Reference I discusses these moints further,

Equations of tiotion/ Hub Forces and Moments

The elements are available now to obtain the equations of motion
for the blade bending and torsion modes, in the rotating frame; and the
forces and moments acting on the hub due to the mth blade. The cteps
required are:

a) Substitute for the expansion of the bending and torsion
motion as a series in the modes,

b) Use the appropriate modal equation to intrciuce the
mode natural frequency into the bending or torsion
equation, replacing the structural stiffness terms
(and for bending also some of the centrifugal stiffness
terms). '

c) For the bending equation, operate with Sa‘(l‘("')&f
to obtain the ordinary differential equation for the
kth mode of the mth blade (the Q equati?n).

d) For the torsion equation, operate with Seo, R (O
to obtain the ordinary differential equation fo the
kth mode of the mth blade (the 1.9 equation),

The result is the equations of motion and hub forces in the rotat'ng
frame, The transformation to the nonrotating frame involves the following
steps:
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a) Cperate on the hub force and moment with & (..o ;
i.e. sum over all N blades to obtain the total force

and moment on the hub,

b) Find the ‘C‘s)—fs )'ﬁ_‘ conponents of the force
and moment in the nonrotuting frame (the S system),
. DD -

c) drite the shaft motion A s We , and Lo in terns
of the f,):f,)‘ﬁ_‘ components in the nonrotating

frame (the S system).
d) Apply the Fourler coordinate transform to the equations
of motlon and rotor degrees of freedomjy operate on the

equations for bending and torsion with

. 2 £ (.~ Voo . = E (. - e
—'kg:c-- Y, '_,gc Yemd b | T E ) an W

to obtain the nonrotating equations of motion (0, 1C,

1S, etc.). N >3 is assumed for this transformation.
The transformation of the equations to the nonrotating frame will be delayed
however, so the rotating modal equations may be presented first.

We add at this point structural damping terms, modelled as equivalent
viscous damping; the structural damping parameter is € (which may be different
for each degree of freedom), equal to twice the equivalent damping ratlo,

Names are given to all the inertial constants now. The equations
of motion, hub forces and moments, and inertia constants are also normalized
at this point. The inertia constants are divided by the characteristic
inertia I, = Sf r’a dr, and we introduce the blade Lock mmber ¥ = { acn"/rb.
This normalization of the inertia constants is denoted by a superscript *.
The rotating equations of motion are divided by Ib' the hub forces and moments
are divided by (N/Z)Ib for M, My. H, and Y, and by NI, for Q and T. The
result is that the forces and moments are obtained in coefficient form.
More details of this normalization procedurs are given in reference U,



Equations

The resulting hub forces, hub moments, gimbal equations, and
equations of motion for coupled flap/lag bending and for elastic torsion/
rigid pitch of the rotating blade are as follows.

zc - ~ o ('.
Forces: ¥ %;C:“ = ( = - ZM: Yoo *+ 2 S:;; ‘Xe (Ss)
, . v “ (i)

=g a(&v —2mly - T s3Re B
> x ¥ . * %o @)

KS—,;: X(c) - Mg 2n - Z—So‘ Qo

Moments:  x ‘2‘,_%‘ = B(%%‘Lw _.If (e +2&33 -I:((ges‘z(éﬁc\)
— LTo.Ta (§ -2 AR
+ zs,?:,-?‘s (8% —29."’3
—2fxg, (39 -8

¥ 2= 3 (2 o (&,‘-z&o-v-zf (Boc+2fus”
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o
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Aerodynamic forces
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and then for the nonrotating equations:
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Inertia constants
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Nonrotating frame equations

l.e. after application of the iocurier cooriimte transformation, are

The equatlons of metion for the rotor in the nonrotating franme,

. . N o N ~
Az’lz +A.Y~R -O-Aglg +A1°‘ "‘A. ol +A°o(== BVR*MM

and the hub forces and noments
.- . A/ e AN, [23g F
F = Corxp+ %R+ CoXp “'CZ°‘+C'°‘+Q'°‘+ ado

-t
where the rotor degrees of freedonm ( X, ), shaft motion (&¢ ), rotor blade

n

; b -
pitch input ( v, ), and the hub forces and moments ( 7 ) are:
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matrices of the coefficlients, and the aerodynamic forcing vectors, follow.
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In this section, the crodynanic forces it mements on the rotor
blade are derive.. %We chall consider the generul ¢ite of high or low
inflow, and axial or nonaxial tlow. The aecrodynamic terms in the rotor
equations of ~motion and the hub {orcec ind moments are obtained for
three cases: 1xial flow (hover or high inflow cruise); nonaxial flow with
periodic coetricients (helicoptor forward flight, or conversion mode

flight), and a constant coefficient approximation for nonaxial flow,

The principle assumptions in the aerodynamic analysis are:
reverse flow is neglected (goo® to an advance ratic of zbout 0.t cr 0.5,
which is sutticient for the tilting provrotor aircraft); the wing uake
(near field anl far field) effect on the rotor, and other wing/rotor
interferences are neglected; the unsteady rotor wake effects are neglected;
the virtual mass aerodynamic forces and moments are neglected; the order
¢ (rotor chord) terms in the aerodynamic 1ift expression are neglected;
the order c3 terms in the aercdynamic moment expression are neglected;
and only first order velocity terms are retailned. The derivaticn an?

notation are an extension of that in reference 4,

Section Aerodynamic Forces

A hub plane reference frame is used for the aerodynamic forces.
All forces and velocities are resolved in the hub plane then, i.e. in
the B system. The hub plane reference frame is fixed with respect to the
shaft, hence it is tilted and displaced by the shaft motion. Figure 10
{1lustrates the forces and velocities of the blade section aerodynamics.
The velocity of the air seen by the blade, the pitch angle, and the angle
of attack are:

6 = blade pitch, measured from the reference plane

Uny Upsy uP = air velocity seen by the blade, resolved with
respect to the reference plane; u, is in the hub
plane, positive in the blade drag direction; Wy

Pl

1 s g A T s 13



is in the hub plane, positive radially
outward along the blade; and is normal
to the hub plane, positive down through
the rotor disk.

U = resultant air velocity in the plane of the section.

induced angle

fl

section angle of atltack
‘,f

fi

¢
o

where

-1
¢#> = (om ‘AP‘/U“F
o= ©—3¢
The aerodynamic forces and moment on the section, at the EA, are:
L, D = aerodynamic 1ift and drag forces on the section, normal
and parnllel to the resultant velocity U
¥, F_= section l and D (tntal aerndynamic force on the section)
- resolved with re~pect to the hub plane,normal tc and in
the pline of the rotor
- radial drag force on the blade, in the nlane of the disk,

positive ontuard (the same direction as rositive uq);
the radial rorces due to the tilt of ¢ and Fx have been

considered cepirately. N
= section aerodynamic moment about the EA, positive nose up.

[

Aerodynanic forces -- wind axes
The section 1ift and drag are

L = 1\2'% ulcc’
b= jgUiccs

where U = resultant velocity at the section

Jg = air density
¢ = chord of blade
The air density is dropped at this point, in the process of making the

quantities dimenslonless with fs , 32 , and R, The section 1lift
-75-
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and drag coefficlents, c

1
of the section ingle of attack and Mach number:

o~ = —~¢ = p -al wuelu-

Lo, s ) oand Cq = cﬁ(..( , 1) are funct or:

M = Mxyp U

where “TIP ic the tip Mach numter, the rotor tip speer £)7 divired by

the speed of cound. The ‘ecpendence of ¢, and cy on other quantities, cuch

1
as the lozal vaw angle or unvtei’y angle of attack changes, is neglected.

The raiial ferce, due to the radial Aruy, is

F = "\;‘—-\izbz i Uneccy

The radial drag force 1s Aderive” assuming that the viscous drag force on the
section has the same sweep angle as the local section velocity. The
noment about the EA is
Mo = =%abk + Muc + Mug
- - %A,Qi\Jﬁczcag -+--é,032:‘<k-‘ + Mug

where X, = distance aerciynamic center (AC) behind EA
ch section moment about the AC, positive nose un.
ac
M,,. = unsteady aerodynamic monent.

'S
For the scction aerodynamic moinent it is necessary to include the unsteady

aerodynamic terms, which from thin airfoil theory are
Mus c? +3 22 XAy
;c._-s -32[ (VB)(‘ gc_"“b(o))

+ (o +upwt YO +5EY]

where w = mean upwash along the blade chord, i.e. normal blade sectlon
uTsinG - upcos@

dw/d% , basically the pitch rate ®
uTcosB * usin®

B =
v

-76-
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Hence in the aerodynamic model we have neglected the tollowing
eftfects: reverse flow; shed wike aerndynamic interference (e.g. 11ft
deficiency function set to unity); terms in L order ¢ and above; term:

\
in M order ¢ and above; virtuil mass terms in the uncteady aercdvnanic

moment.
Aerodynamic forces -- hub plane axes
With respect to the hub plane then
Luy —Dub

F',‘:'.L.?\M‘-# +Dwsd = Lup+Dur
B ¥}

Substituting for L and D, and dividing by ac (where a is the two-dimensional

section 1ift curve slope, and ¢ the section chord; which enter the Lock

number ¥  also), we obtain:

v <s
2 = ulur gl —we Y

r- X~

F c

;:g: = Wwn(wp 15‘ + wnr ?Eﬁn‘)

€c _ <4

ac bue Ja
Ma _ _ T cy 2 SCSw Mg
e = ™ U 2o+ U 2a + ac

The net rotor aerodynamic forces are obtained by integration of the section

forces over the span of the blade, an then summation over all N blades.

Perturbation forces
Bach component of the velocity seen by the blade has a trim term,

due to operation of the rotor in its trim equilibrium state; and a perturbation
term due to the perturbed motion of the system. The latter is due to the
system degrees of freedom, and is assumed to be small in obtaining the linear

differential equations describing the dynamics. We shall write the blade
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pitch and section velocities as trim plus perturbation terms:
©=> &+ 680
Wr = Ur + Swner

We ={> Up + P
ue SO uR <+ Sur

then there follows the perturbations of < ,U, and M:
ur SUp — updur
W
S = ur Sur 4+ updnp
W
5M = My 5M

S = &0

and of the aerodynamic coeffients

Sea = &L 3o + FASM = S B+ Qo bW

(and similarly for Cn and cd). The perturbations of the section aeroc}ynamic
forces may then be obtained by carrying out the differential operation on
the expressions above for Fz' Fx' F‘r. and Ma. » using the above results

to express the perturbations in terms of &£@ .Su.r. S“P’ and Su.R.

The coefficients of the perturbation quantities are then evaluated at the
trim state. The results are:

§R = (LuvFE —uwe T SO
+ - ECurgs —weE ) + (%*"‘E{-:)%r'
—(%*Mi:)a;— gU\JSuP
+C‘&-’(w‘—;—".-w‘;: ) + (cf“-c-ncg)\_&:z

+32u = Cﬁ+*‘"§i7“§'] Sur

= Fig 0 + Fa  Sur + Fi, Sur
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owmd:

She = [UE(mFE+<F)1se

.4.{0-' (=% S + CC',E;‘E")-%A\n (2%%*'“?{\

(-}
+eur (P TZ+2Z0Y] Suy
Lo oS D) —nne (2R )

+cup (2FZ+MEL) T sup

- - Mus
ad

34“;

= Mag $O0 + M-pé"‘f*"“n,.éhv + ==

Velocity of the Blade

Now we obtain the velocity of the air seen by the blade section.
There is the trim velocity, compoced of the forward speed, rotor rotation,
and rotor induced velocity; and the perturbation velocities, due to the
rotor degrees of freedom and the shaft motion, and due to the aerodynamic
gust velocity.,

The rctor is rotating at constant speed S . The steady velocity
of the rotor with renpect to he air, iz described by (figure 11):

V = trim velocity of the rotor in inertial axes,
in the rotor x-z plane.

4o~ angle of attack (undisturbed) of the rotor hud plane
with respect to V, positive for disk tilt forward (for
V doun through the disk): this is the shaft angle.

-80-
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There are then the following cases: ewyep = 90o for cruise (high inflow
axial flight); ewyp small for heliconier forward flight; o¢ya large
but less than 90° for conversion mode; 2nd V = 0 is the hover case.

The rotor irduced velocity is v, due to the thrust T (figure 1i); v is
assumed to be normal to the hub plane, and uniform over the cdisk., Now the

rotor advance ratio /u and inflow ratio \ are defined:!
= N cos o’ we
2 SR

Viwornwe +v

sz
The cases are then: for hover m = 0 and W small: for helizopter forward
flight mek 0and W small; for conversion mode flight ,¢ 0 and
™\ order 1; and for crulse flight M = 0 and % order 1.

S =

For the rotor induced velocity wc use the Glauert result.

v
A= pfBeowyp + 7;7';';"{{"

"
For high speed ( v2 >> %CT(SZR)“ or about V/SL R > 0.15) in inflow ratic

is approximately c
v

= ok Fedue + Tunp

The induced veloeity is thus quite small, v/V<<€ 1, for typical proprotor
cruise and conversion mode operation. The irnduced velocity is not generally
an important factor in proprotor aerodynamics at high inflow; hence the
assunption of uniform induced inflow is acceptable for an investigation of the
proprotor aeroclastic behavior. (See reference 4,) The mutual aercdynamic
interferenze of the rotors is neglected.

The trim velocity V is steady, at an angle ©twP to the rotor hud
plane. The uniform induced velocity v is normal to the hub plane. The
advance ratio and inflow ratio, m and 2\ , are the nondimensional
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components parallel and normal to tl.e hub plane. In oody axes, V would

be fixed in the reference frame, and would tilt with it. Here an inertial
frame (the S system) is used however, :+ it follows that tilt of the rotor
by the shaft notion gives a s .11 change in the direction of V as seen in

the reference frame.

The chaft motion consists of small linear and angular velocity,

with components defined in the nonrotitirg frame:

a%e = 9.“1,4-:3\. 35"‘{'\-t5

Te = oy + 64 36+ 8 ks

The aerodynamic gust velocity has components U,

lateral, and variical) defined with respect to the body or earih axes
(figure 11); these components are the velocity seen by the aircraft, and

» Voo and w. (longitudinal,

are assumed to be small compared to ~£2=R. The gust components are
defined with respect to V, l.e. O¢yup from the disk plane, so that with

V usually horizontal (level flight) We and u arc always the vertical

and longitudinal components with respect to the flight path. The gust
components are normalized by dividing by JS2.R, not by V as is often the
convention for airplane analyses. The nerodynamic gust is assumed to be
uniforn throughout space.

Trim terms
The rasult for the trim velocity terms is:

Wr REPpiwl = as ¥ (Soay ~ Eq"fr?‘-')
. >
* 1:1‘.?.-13

. ] .
wpz M+ £q¢ Y + (e
4
rcat® (Gu~deay + L9 "0'7{' +QR6)
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mwe = /uws’P + (%R + Cea &:Aj\)‘f‘ zﬁ‘ﬁ.(vlt-b‘l. )
—_>( SCA.—SPA’_ + z,ﬂ;".'g‘v-f'.' -+ BG‘B
S -
+m Y (3&_,‘ - &1:1@-\13 D)

= O+~ ec.‘.sg -‘KQC’GG — E_q;q;

where 9:«,&- is the input cyclic pritch required to trim the rucwr.

“or the trin velocity, the blade berndi:; and gimbal notion i- pericdiic.

ror axial flirht, M = 0, the trim velocities are constant; for non:xial
flow, M > 0, these velocities are periodic in ‘4’.., , due to the rotation
of the blade with respect to the rotor forward velocity.

Perturbation terms
The result for the perturbations of the velocity conponents and
the blade pitch, due to the rctor and shaft motion and the aerodynamic

gust, is then:

Sur = Oolx + Yu +ve) cos WYu
+ (Nety =% +uo Casorme + Wo o wp) e Ve
+pens W Corg + W5 )
+ ¢ (g + ¥ )
+ £ 9 (E‘Q . :1"-)
+ moait Z 9. (1&"-{")

S 2 PN
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Rotor Aerolvnumic Forces -- Rotating Blade

[RPT I]

with now the expansions ior the section forces and monent in terms
of thj‘elocity perturbations, and the velocity in terms of the notion
of th& rotor and shaft, we may cbtain the perturbations of the aerodynamic
forces on the blade. These are the blade forces expanded as lincar conbination<
of the degrees of freec:un. Giving names to the aerodynanic coefficients
at this point, the ~esults for the required aerodynanic forces on the rotating

blade are as follows.

Jending:
- (Ba-2R)ar=
Maws + Maup L (Xorn + gw +Va ) cosWe
+ (Nory = i + nacasoryy +W6 o) o, ]

+Maug (2 ~ e

+ Mayg (o + ¥

+ Mgy ( B — Ol =+ Ug Pucinp — g cascryp)

+ Mau@ (@6 +&x Sl = &4 coe Yo )

+Mae Be

+ & Maxds ¢
+ < Mq‘._\-. At

+ L Mgy ¥
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radial force:

\o X e +ig - (wgt+ 2R Y D B

= R [= vy 43 tved fm e

+ (Noty —%u + W ot ot p 4130 ot ) awe ¥, ]
+ ¢ (_ (>ox +s‘xk+vt D) cas'ta

<+ ( Dot — An e W 0 Dy p 4 \Og Ame u..p\/ p.-v...']

+ RE (33 +9%)) + Rp (o + %)
+ Ry (2 —rovy -buoiwauo*k"v“‘“’“?\
+Ry (o +3y ruthe =3y ) + Ry Ro
+ £Ry: §t + ZRq ¥
+ ThRp

Torsion/pitch:

\ \ ) =
S‘-'A IcMa B ~ S"PA (?,_fa + i—t_"ﬁ}’ Y‘A\& &f

= Moy p [ Orey +\'V.+Va.\w%—
+ (dohy =% +Ugcorcinp +96 VNI
Mol G2+ M) + Maypp (oz +W)
+ Mpr Lo = oy + Uasm olup — o cosorue ]
+ Moxp (o + Ve S eaa®) +Mags B6
+ L M?“.\‘ ﬁ: + € Mf;\: 9
+ M o+ 2 Mpepr P
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Hub forces and moments: similar to the bending case, but with notation

integrand notation
flap moment er M
torque rFx Q
blade drag forcen Fx H
thrust F T

V4

Aerodynamic coefficients

Applying the results for the expansion of the aerodynamic forces,
and the expansion of the velocities, the aerodynamic coefficients may be
evaluated. These coefficients of the degrees of freedom in the aerodynam®c
forces are constant for axial flow, the A = 0 case. For the general nomaxial
flow case, M > 0, the coefficients are however periodic functions of ‘K“ .
The results follow,

T e = S e (R te- ) e

Magp = o Fer (FerTa — Fur k) S

Mg = S, e (FerTe-Furly) oo

Ml = pecran Moyp

Moy = Yo ﬁ';'(Fn'fs—Fue'iaB&f

Mav@ = % - ( Goeta - & 'f.) '

Mg = pmesaiWe Mg

Makq: = S0 Fu -(FarTa =Frr R Ya T B0

+So Hu- (Frpta ~ FxpTa)tg 7 OF
oy = e € b (P Te 6y, Ty Ve
+S0 T (Fapla~Fae Ba> a7 8]

M’ = S;?*‘(Fhfs -Ro )} &r
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Flap moment:
f"\,u = S:' Far rOr
Mg = Ss Far elar
Mg = pcas¥e Mp
My = S, Fap B
Mg = §, Fep 280
M@a = pese Vi My
Mg: = S:s CF%*"E’G".]" *Ftrfh-;l"S -8«
g = it S (SR g 20,37 R
Mp: = S\a Fio §a c8

Cther hub forces and moments: similar to flap moment, with

coefficient integrand
flap moment i er
torque Q rFx
blade drag force H Fx
thrust T FZ

Radial force:
Ru= g: Frg B
Re = S [Fer - Far (&~ S2 +T (x@+2.RY Y] ar
Ri = S LFrr —For (5-52+T - (wi+2R)" )] clr

2; S et Be — pbal, R’,
Raw Se L6, —Fep (1= 4Ta-t+20Y )] a0
Re = So [Fre —Fap (8i~d2 4% (%2+ 2RI c&r
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Rotor Aerodynamic Forces -- Nonrotating Frame

The aerodynamic forcing functions for the rotor equations of
motion in the nonrotating frame, and the hub forces and moments are
now required. These are obtained by summing the blade rotating forces
(given above) over all N blades. The fourier coordinate transform of
the rotor degrees of freedom i introduced as required.

Axial Flow

First consider the case of axial flow, /M = 0; for elther
high inflow ratilo b Y (order 1, i.e. proprotor cruise flight), or low
inflow (small % , 1.e. hover in helicopter mode). In this case the
aerodynamic coefficients in the blade forces are constant, independent
of M\.. . The coefficients are also independent of m (the blade index)
then, so the summation over N blades operates only on the blade degrees
of freedom and shaft motion variables. The result for the required
aerodynamic forces, in matrix form, 1is

. ~ ~
~Maso = Akp +Ae + A& + Aok - Bg 9
Fose = Cixg +Co¥%g + S, & +’Qvoo{ + Do }

where the rotor degrees of freedom ( §; ), shaft motion (X ), and
-d
aerodynanic gust input ( § ) are:

2;9.1 % T
3 - @.‘ -3 - 3“ - uG
XK= | o, == |2 }‘ Vo
ab [~ ) w“
Os ©/y
Gae o/3
(‘6-‘ he -
L.WB -

These coefficients simply add to the inertial coefficients already derived,

to complete the equations of motion, The matrices of the aerodynamic
coefficients follow.
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Nonaxial flow

Consider now the case of nonaxial flow, M > 0, This case
ineludes helicopter mode forward flight, and conversion mode flight for
the tilting proprotor aircraft. The aerodynamic coefficlemts are then
periodic functicns of W, . Hence the equations of motion for the
system have periodic coefficlents, due to the periodically varying

aerolynamics of the edgewise moving rotor.

Cne can express the aerodynamic coefficients as Fourier series,
and then obtain the coefficlients of the nonrotating equations of motion
in terms of these harmonics. For the general rotor considered here,
it would be necessary to evaluate the harmonles of the aerodynamic coefficients
numerically, however. It is simplest therefore to just sum (numerically)
the coefficients over m = 1,..N as 1s required in finding the nonrotating
equations of motion and the net bub forces and moments. The nonrotating
coordinates for the rotor motion (Fourier coordinate transformation) are

also introduced.

For the periodic coefficient case, it is necessary to specify the
number of blades N, since the periodic coefficients depend on N; also,
the periodic coefficients couple all the rotor nonrotating degrees of freedon,
so more than the 0, 1C, and 1S variables are involved with the shaft
motion (1f N » 3). We shall consider only the case N = 3; then the
0, 1C, and 1S degrees of freedom are the complete set, even for the
periodic coefficient case. The period of the equations in the nonrotating
frame i1s AW = 2w/N.

Again ve wrlte the aerodynamic forces in matrix form, as

- Moso = A.i"ﬁ&%t +x\& *xON-BG%v
Rae ™ S 5p +Ca%g +& &t 4 Toor 4049
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where now the coefficients A, B, ¢, and D are periodic functions of N
(period 21\’/N). The matrices of the aerodynamic coefficlients follow.
The notation

C = cos™m

S = sin W,
is used (M, = Y4+w AY ). Note that each matrix is a summation over
all N blades (¥ = 3 in this case).
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Constant Coefficient Approximation

Finally, we consider a constant coefficient approximation for the
nonaxial flow case. This approximation uses the mean values of the
periodic coefficients of the differential equations. A constant coefficient
approximation is desirable (if it is demonstrated to he accurate enough)
because the calculation required for the analysis is considerably reduced
compared to the periodic coefficient equaticns, and because the powerful
techniques for analyzing time-invariant (constant coefficient) linear
differential equations are applicable. It is only an approximation to the
correct dynamics however; the accuracy of the approximation must be determined

by comparison with the correct periodic coefflcient solutions.

To find the mean value of the coefficiemts, we apply the operator

2w
g5 9 (0N

to the periodic coefficients given above. The result is terms of the

form \
Zﬂ “’*ﬂ
L C \
al;so <~ C ;:::**M(W_\ oY
20y,
2 e ca0 Voo ,
<
ow s B
) - T YMODW,,
= ~N S',. 2~ So %‘s;
<
[ ™~
' ‘t MIG
'
= T
MM+ M
M. - tM‘Q
 Laing
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where M are the harmonics of a Fourier eseries representation of the

rotating blade aerodynamic coefficient !i:

. d we “$
Mt = f"““" T m c-.‘\n“’a.-t' M SmnwlV,,

L)

ws

In the presant case, these harmonics must be evaluated numerically. We
evaluate ¥ at J points, equally spaced around the azimuth:

o
- L .
M = = tMJ
we,ws 2 - coan'?y
=y ) V\us\""“
where M3 = M('ﬂ’
WS = SAW ) Qz""?
[
AW =

The harmonics up to the second (n = 2) are required here. This Fourier
interpolation formula requires then for good accuracy about J> 12 (a 30°
azimuth 1ncrement). Using these expressions, the required harmonics are:

M°
tMm / |
L0 sos¥
T = # s Jorey M('P'D
M+ F M ) y RPORY

T
M® — 3 M2 2o tH

Zraens ¥

tM"’
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It follows then that the constant coefficient approximation is
obtained from the perlodic coefficient expressions by the simple

transformation:
' L]
N - e i -~ o i;
s - & A
~ 53‘ 261' M("’m‘ » - 3“ -icsi M(W‘)
st 20 s
2cS

The sumration over N blades (nm = 1...N, AW = 2%/N) for the perioiic
coefficient case is replaced by a summation over the rotor azimuth
(j=1...J, aW = 2%/J) for the constant coefficient approxination.
This is quite convenient, since the same procedur. may be used to
evaluate the coefficients for the two cases, with simply a change in
the azimuth increment. The periodic coefficients nust be evaluated
throughout the period of W =0 to 2w/N of course; while the constant
coefficient approximation ( the mean values only) is evaluated cnly once.
With the substitution W& ™> ¥ kY , the results -
given above for the periodic coefficient matrices are directly applicable -
to the constant coefficient approximation as well.
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The are two requirements in the dynamics analysis for the trim,
eq1ilibrium solution for the rotor blace motion and rotor performances
first, the trim bending deflection (x,‘i-&-ﬁi) is required for the
coefficients, particularly when the blale torsion dynamics are involved;
secondly, the evaluation of the aerodynamic coefficientcs requires the 1ift
and drag loading of the rotor blade, The trim bending deflection is assumed
to be independent of M in the analysis, so the mean value must be used
when m> 0; for the aerodynamic coefficlents, the periodic variation of
the trim blade aerodynamics when Mm% 0 will be included however.,

The dynamics analysis (the evaluation of the coefficients of the equations
of motion) must be preceded therefore by a preliminary calculation of the
rotor equilibrium motion. The trim solution for the blade motion is
periodic in the rotating frame for the general case of nonaxial flow;

for m = 0, axial flow, the blade motion is steady in the rotating frame.
For the trim blade motion solution we chall consider only the bending

and gimbal degrees of freedom. It is assumed that there is no shaft motion,
gusts, rotational speed perturbation, or torsion/pitch motion (except
cyclic control and any bending/torsion coupling) in the trim solutiown.

The trim solution involves the numerical integration of the
differential equations of motion for a single blade in the rotaling frame,
until the blade motion converges to the desired periodic solution. The
equations for the blade motion are obtained from the atove analysis, and are
for the bending and gimbal degrees of freedoms

P : v
Tau (9 "'\S°v.\|» #Qt\\s‘ + 2 CIq‘i‘ 1:
= Z:.o “+ ¥ S: ?{,_-(:-{‘t.- ;:‘;to)ﬁf

::“o ‘3(3.") = 2C

b g a....)”S P‘M
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where the inertia constants are defined above, and the aerodynamic forces

are evaluated using the trim velocity components (for which expressions
are given above).

After the integration of the bla‘e motion converges to a periodic
solution, the rotor performance may be evaluated, i.e. the mean aerodynamic
forces and moments the rotor produces at the hub, particularly the rotor
thrust and torque coefficients. The Fourier harmonics of the blade bending
motion are also evaluated. From the zeroth harmonics of the bending motion,
the mean bending deflection of the blade may be evaluated.

For axial flow.‘)» = 0, integration of the blade motion is not
required; for the gimbal motion is zero (assuming no cyclic pitch input)
and the equation for the blade bending modal deflection reduces to

zﬂ,vﬁqusz‘. +\—S 1 ( u-;{fﬁ&r
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BLATE BENDING AND TORSION MODES

Coupled bending modes of a rotating blade

Bquilibrium of the elastic, inertial, and centrifugal bending moments
on the blade gives the differential equation for the coupled flap/lag
bending of the rotating blade. or free vibration -- the homogeneous
equation (no forcing) with harmonic motion at the natural frequency ¥ --
we obtalin the modal equation for bending of the blades

e R e AEEE E A S bl

where ﬁ ()= R ~ %oi = bending deflection (mode shape)
gx = lt,,’f-f-ftzg;ii ax bending stiffness dyadic
ko 2P 3’»‘1 = rotor rotational speed
9 & natural frequency of mode

This is an eigenvalue problem, a differential equation in r for the

mode shapes 713 and the natural frequencies ¥ . The equation with

the appropriate boundary conditions constitutes a proper Sturm-Liouville
eigenvalue problem. It follows that the solution existss a series of modes
% (*) and corresponding natural frequencies 7; $ where the modes are
orthogonal with weight m, i.e, if 136k then

Sf ?go\‘!"mu =o

and the frequencies satisfy the relation (an energy balance):
Sj-"'!'"‘-’- I +0tSr gm0 @) Jae
S: 1"&““

The modal equation will be solved by a Galerkin method. The mode
-
shape is expanded as a finite series in the functions ti(r)t

-d
q: Sc;&;(r)
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We require that each of the ?‘; satisfy the boundary cond!tions on q ;
then the sum automatically does. Since a finite serles is requ&red for
computation, this is an approximate calculation; the functions f‘i should
then be chosen so that at least the lower frequency modes can be well
represented, for best numerical accuracy. Substituting this series in
the differential equation and operating with

S: fg". (++D&¢

reduces, the problem (af'ter intesration by parts and an application of the
boundary con'‘tions) to a set of algegraic equations for -c' = fcij

(A=-t*B)2 =0

where the coefficlent matrices are

Aa= SO E A+ s hdl o Rhsh]er

seRY

Eigenvalues of the matrix B 1A are the natural frequencies 9% of

the coupled bending vibration of the blade; and the corresponding eigenvectors
- JEY

’ ¢ give the mode shape 1 - As a final step, the modes are nornmalired

to unity at the tips \(DI =1,

1 A convenient set of functions for f, are the polynomials Cref 8

S, = (.u:(uﬂ)'"' - ‘%:'”'“‘ o BEne) _we3

(for a hinged blade f,=r1s used). These polynomials satisfy the
required boundary conditions, butare not orthogomal functions.




e

Torsion modes of a nonrotatir- blade
Equilibriun of the elactic and inertial torsion moments gives

the modal equaticn
@3 }*)" + xeuti=xo
The modes are orthogonal with weight Ie i t.e, i 198 ¥k thea
S: ’: rn Teobr=-o0

an?! the frequenclies saticfy the rclation

ug = S:.“ [— 2 3"’&4‘

3\'» To &

These nre nonrotating mo'es, ro the solution is independent
of SL or & ., The equation is solve! by a Galerkin method. Writing

} = EC; 'S'; )
where the functions fi satisfy the boundary conditions on } » ani overa .ing

x1th S:'“]n (sed e on the "ifferential equation, produces a set of
algebraic equations for g Cci'j :

(A-— °‘B>€ =0

vwhere .
[~ D 4 o_ 9
Api = S,” ST.‘-T!‘ 5.5 &«

'
By, = Sr, =0 5l U
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The eigenvalues of the matrix B-lA give the natural frequencies of the
K

torsion vibration, and the corresponding eigenvectors for ¢ give the

nmodes. #inally, the torsion modes are normalized to unity at the tip,

30y = 1.

A convenient set of functions to use for f1 is the solution for

the torsion modes of a uniform beanm:
c~-Caa
B - d e
-‘“ = = [ (" 13“ 1 =Cga J

These functions satisfy the boundary condiitions, and will usually be
close to the actual mode shapes.
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SUPPORT EQU'ATICNS CF MOTION:s CANTILEVER WING

For the rotor support we consider a cantilever wing, with the rotor
on a mast or pylon attached to the wing tip. Reference 4 discusces the
cantilever wing as a representation of the tilting proprotor aircraft
dynamics, and develops the equations of motion describing this support.

The equations of motion for the wing, an' the rotor motion produced by
the wing are developed in reference 4; these results are adopted here
with only two extensions: +to arbitrary angle of attack of the rotor
shaft with respect to the forvard velocity; and the inclusion of a wing
trailing-edge flap among the controls.

Cantilever wins

The cantilever wing and pylon geumetry is shovn in fig.re 12,
We consider a high aspect ratio, flexible wing, with the rotor on the
tip. The wing is attached to an immovable support with cantilever root
restraint. A pylon with large mass and moment of inertia is rigidly attached
to the wing tip. The rotor is mounted on the pylon with the hub forward
of the wing EA, with mast height h. A general pyion angle SP is considered,
from vertical in helicopter mode to horizontal in airplane mode. The wing
motion consists of elastic bendiing, vertical and chordwise, and elastic
torsion. There is no motion of the pylon relative to the wing tip, so the
wing tip motion is transmitted directly tn the hudb, and hut forces and
noments transmitted directly to the wing tip, through <the mast of height h.
The rotor and wing operate in a steady free stream of velocity V. The
pylon (or mast, or rotor shaft) angle of attack 8? may be large, so it
covers the entire range of tilting proprotor operation. The cases include:
&P near 90° for helicopter mode; 3P between 0 and 90° for conversion
node; Sp * 0 for ruise mode; and V = 0 is the case of hover flight.

The wing angle of attack is 5-», » defined positive nose ups

it is assumed that du; is a small angle. The angle between the wing am
the rotor shaft is then :'-h‘ t 1t is this angle which dzternines

-19-
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the transmission of motion and forces between the rotor and the wing.
Recall that ©Owpp is the angle of the rotor disk to the forward speed V;
here we use Sp for the shaft angle of attack, hence Sp = 90°- /WP -
We also consider small sweep angle Jw: (positive aft) and small dihedral
angle §u, (positive up) of the wing., A major effect of 8\5 and e, 1is
on the position of the effective elastic axis of the wing, hence on the
effective mast height for the transmission of motion and forces between
the rotor and the wing. The angles 5», ' Jut, and 8.,., are removed from
the orlentaticn of the pylon and shaft at the wing tip. So the rotor shaft
is in a vertical plane with no sweep or dihedral, parallel to V when

éP = 0; arc then §@ 1s the angle of attack of the shaft with respect
to V, not with respect to the wing.

The wing is assumed to have a straight spar 1line, which is the locus
of the local A, The wing root is supported with cantllever restraint, and
the rotor shaft is attache! rigidly to the wing tip. The wing has no twist,
constant chord c,» length y, from root to tip (semispan), with the distance
Y, measured from the root, aiong the wing spar, The shaft length (mast height)
is h, the Jdistance the rotor hub is forward of the wing tip EA., The wing
spar is roughly perpendicular to V, with small wing sweep, dihedral, and
angite of attack considered. The wing root is attached to a plane defined
by the forward velocity V and the vertical; then the three rotation angles
§w, » 8wy, and &wy cdefine the orientation of the spar with respect to
the free stream velocity. Next the pylon is rotated by = $w, ., ~dwy ,
and -5-'; with respect to the wing tip, to keep the shaft parallel to V;
finally the pylon is rotated by 3p with respect to V, defining the
orlentation of the rotor.

Swept wings are usually built with a center box structure in the
fuslage, where the spars are unswept, and only the wing structure outside
tl.e fuslage has swept spars. The wing is restrained at several points where
the wing box is tled to the fuselage structure, or in this case to the
cantilever wing fixed support. There exists an effective elastic axis
for vertical bending of the wing tip: some point on the shaft or its

12
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extension where the application of a vertical force results in purely vertical
displacement of the shaft, with no rotation in pltch. Without sweep
this point would be just at the wing tip PA; but with sweep a force there
will produce a pitch motion of the shaft also, hence the effective EA is
some distance from the wing tip EA. The effective elastic axis for the
tip lies between thiﬁctual wing tip EA and the extension of the unswept
spar line, the actual position depending on the degree of root restraint
and sweep, and other s+ructural details. Figure 13 illustrates the
geometry involved. Reference 4 develops an elementary model for the
wing bending and torsion including the shift of the effective EA due to
sweep (and a similar effect due to dihedral), which is adopted here.
The effective EA position is described by (figure 13):

h = mast height, distance hub forward wing tip EA.

hEA = effective mast height, di-tance hub forwar:d
effective EA,

ZEA = distance hub below effective EA due to dihedral.

Further discussion of this effect, including the estimation of the
parameters involved, is given in reference 4.

The aircraft has two contrarotating rotors, one on each wing tip.
The direction of rotation of the rotor on the right #ing (as in figure 12)
may be either clockwise or counterclockwise. The influence of the rotor
rotational direction is a few sign$ in the equations of motion, reflecting
how the rotor hub forces and moments excite the wing motion, and how
the wing produces motion of the rotor shaft, As in reference 4, the
notation L2 1is used to carry this influence of the rotor rotation
direction, where SL takes only the values sk1:

+ 1, rotor rotation clockwise on right
R - wing, counterclockwise on left.

- 1, rotor rotation counterclockwise ¢
right wing, clockwise on left.
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Wing Motion
The wing motion is lescribed by elastic bending and torsion of the

spar; the pylon, and with it the rotor shaft, is rigidly attached to the

wing tip. Zlastic bending results in Jetlection of the wing spar with
conponents both perpendicular to the wing surface (vertical or beam bending),
and parallel to the wing surface (chordwice bending). Vertieal and chordwise
ben'ine are 'efined with respect to thefiireciion of the local principle

axes of the section. There is no wing twist, so these principle axes ave

the same all along the span, but they nre not vertical and horizontal axes
because of the wing sweev, dihedral, and angle of attack. We define (figure
12) the wing bending and torsion deflection as follows:

z"(yw) =~ elastic bending vertical displacenent of the
smr, normal to the wing surface, positive up.

xw(yw) = elastic bending chordwise displacement of the
span, in the plane of the wing, positive
rearward,

G)w(yw) = pitch change of local wing section, due 1o

elastic torsion about the local EA, positive
nose up.

A modal description of the wing elastic defermation is used, an® only
the lowest frequency modes retained. Wec consider just three cdegrees of
freedom for the uing: first mode vertical bending, chordwise bending, and
torsion. “he degrees of freedonm reprccenting the wing notlon are:
q, = wing vertical or beamwise bending, positive
1 upward: q = ﬁw/y at the wing tip.
"1 Tw

q"z = wing chordwise hending, positive rearward;
qw? = xw/yT; at the wing tip.
p. = wing elastic torsion, positive nose up;
P, - e" at the wing tip.
Assoclated with these degrees of freedom are mode shapes, l" (\)\n) for
torsion, and ‘zo (‘)03 for bending. These modes are normalized to 1 and

to y, Tespectively at the wing tip [y = ¥y )e
W w
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From the results of reference !+, generalized to arbitrary pylon

angle of attack .Sp , the rotor hub motion due to the wing degrees of
freedom is:
_ .
T B C S R
*l\ b ‘) *(&‘4'AQ B b
" -2”‘153 thvd | s =
2, -y S &WKC' -2.5,C Quz
ofy .—38. - ‘35; - L 535 PN
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< §,C
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for cos( éf-sd‘)
for sin( &e -Soz)
for .ﬂ.\t:, (yned
for yT"

for L2du,

s, for ﬂ‘-’

where we have written

3 W a
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Wing BEquations of Motlon

™, degrees o1 freedom ot the cantileve:r wing;, excited by the forces and

rrom reference 4, the equation o

motion for the 9,

' Q
1 Y2

rioments at the rotor hub and by the wing aerodynamic forces, are:
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The wing equations are nomalized by dividing by (N/Z)Ib, so th#otor exciting
forces are in helicopter coefficient form. The inertias are:
1

» A I
Taw F {I\, Sa Ww N\~ &3"'

TE
1
w* —_— wP v)"""
¢ R X
2
2 4 A
IP* - ——
§=
e =
™ i
& L tpgh
Sw = ™¢ AT

where n is the wing mass per unit length; Iew is the wlng section moment
of inertla in pitch; mp is the pylon mass (without the rotor); I, and I
are the pylon yaw and pitch moments of inertia, without the mtor:f about 7
the wing tip effective EA; and Zp is the distance the pylon CG (without
the rotor) is ahead of the wing EA tip effective EA, For the piroprotor
configuration, the pylon mass is so large that it dominates the wing
inertias., Hence the inertia is primarily that of the pylon amd rotor, with
the wing contributing elastic restraint of the motion. The wing structural
spring constants are K* , K* y and K; { these were evaluated by matching

q q
the predicted frequenci&s ofzthe wing modes to the values obtained experimentally.

»

*

Cq ’ Cq y and C; are the structural damping constants for the wing moces.
1 2

Vertical bending elevates the rotor trim thrust above the inboard sectlons,

and 80 gives a nose down pitch moment with effectiveness glven by C;q 1

C:.\ = S:"‘;“'l; &’u/;’," - 3

=179~

" s i e oot s e+ e
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Dimensionally, the spring .nd damring constants are
P T
k¥ =z K/ §Zuse
c* = /% TR

Hence the relative spring and damping rites vary with the rotor rotational
speed; i.e. .‘= wing frequency is really a fixed dimensicnal value (Hz), so

the per-rev values vary with 2. .

Additional discussion and details of the wing equations of motion

are given in reference &.

wing Aerodynanics

The wing aerodynamic forces exciting bending and torsion motion of
the wing are:
Mqueawe = x2xy ). Cem (v &y

Maupeae s Shrm 50 Frw e Ry.
M., }*““f)~'

where Fz and Fx are the vertical and chordwise aerodynamic forces on

the wing"sectionw (11ft and profile plus induced drag); Hw is the aerodynamic
noment about the local EA. The velocity seen by the section has perturbations
due to the wing degrees of freedom, and due to aerodynamic gusts. Aerodynamic
interference between the rotor and the wing is neglected. Fron the velocity
perturbations, the perturbations of the section forces may be found, and hence
the wing aerodynamic coefficients. The derivation of the wing aerodynamic
coefficients follows the standard techniques of strip theory in aeroelasticity:
rmore details of the derivation are given in reference 4. We also include

here the aerodynamic force due to the deflection of a control surface {(flap

or aileron) on the wing trailing-edge. The geometry is shown in figure 14,
A constant chord (cF) trailing-edge flap, extending fromy =y, t y =y,
= considered. The flap deflection angle is é& , positive dowr:gward. So

M Y & A
Preolee = . S.

0
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3,, 1s a control variable, in addition to the rotor cyclic and collective
pitch controls. The result for the wing aerodynamic forces is:

M oo Cadi  Sady o qe,\
M uy S0 — c‘lt‘io C.q-.,q'; C-u.é Qg
Mpw a8r0 SFYTRS 1D P

<=,9; <‘1.1-z L -] S
+ | <9z <49t S92p 3
e
pn S AL 4 pw

Copw Caqv Cauw Uar
+ | capu gy S vor

couw v 9w | \wo
<Aq.é

-+
= P Sg
<pb

The aerodynanic coeffliclents are:

Q.u » &ltvzcl.gdq
caw B DV CiLu e,

Caqwv = S Caw 4 Sﬂj Cain
- 9‘3 v Cle (¥]

2
-.
|
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Cpyy = = 0z3 V2 Cuac €y
coqy = 8:1V1 Cwmae 93

coP9r = -&l‘t v? <te ?7_

. *
e = —9a EV(T+T 2= Vo 55

%
copb = -9z VI 5 Lo Ss

» »
Cpé = - 9 V“(?_:Cg‘ -C\-.J)Cg,ds*

C, and C, are the aircraft trim 1ift and drag (profile plus induced)

cogfficien%s; and CL.; and CD.‘ their derivatives with respect to ox

. [ ]
The section monent characteristics are given by x, , the distance the wing

AC 1s behind the EA, and Sy the nose up moment Yoefficient about the AC.

The constant ac w we

80‘\» - Cw ‘31‘%
wre

accounts for the difference ir the normalization of the wing and rotor
coefficients. The constants e and fn are integrals of the wing mode shapes,
accounting for the way the motion produces forces on the wing:

- e ~
e, = S\‘: Yo @a/ e * 3
Yre v 3 L
¢y, = So v a"_‘“/ Yne £ s
Yre v 2 ~ L
ey = Jo Pov &4qu/yra = 2
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For the flaperon coefficients, we use:

< - <. |- Cg/Cw
C:S = !-" %—;‘ = (-2 +m'¢,)(.QS¢.os E{,\(l*‘ ;A“ )

cly = Fu %5‘—’ ~an (O+OVET ) (354008 EL) (14 "“K“)

OGw
Cde = o = 02 4o 00
3 =37
<
where c= I=-2 va

The first factor in these expressions ir the two-dimensional thin airfoil
theory result for the 1lift ani moment (due to control surface deflection;

and the last two factors are covrections for the wing aspect ratio, thickness,
and real flow effects on the flap effectiveness (baud on r&{. 03.

_Af_f Equation of Motion
The rotational speed degree of freedom ( ‘.& ) is an important
factor in the dynamics, especially with a windmilling rotor. Usually
the \% equation of motion will involve the engine, drive traln, interconnect

shaft, and governor dynamicsj here we shall consider only two 1liniting cases.

The first case is windmilling or autorotation operation of the
rotor. The rotor is free to turn on the shaft, s0 no torque moments are
transmitted from the rotor to the shaft, and no pylon roll motion transmitted
to the rotor. Both effects are accomplished by using CQ = 0 as the
squation of notion for Mg . There is no spring term on Wy , so the
degree of freedom i rwally ';" » the rotor speed perturbation. It should
be noted that M s defined with respect to the pylon, which has a roll
angle ovg i so the rotor spee’ perturbation with respect to space is
the sun N'ﬁ‘ "'&! .

—i
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The second case considersd here is powered operatlon of the rotor.
It is assumed that the rotor hub rotational speed is fixed, at S& , with
no perturbations., This case may be viewed as the 1imit of operation with
a perfect governor on engine or rotor speed, The powered case is treated
by dropping the '4’3 degree of freedom and equation; i.e. the solution
is just ll»:, = 0,

Hence we add to the support equations of motion the equation

for '."5 :
—-CQ = O
)

For the powered case this equation and the Mg degree of freedom are
dropped from the system (a row and colunn eliminated from the matrices).
For the windmilling case they are retained; note that the Ny equation
is first order, since there is no spring term.

Reference 4 gives a further discussion of these two cases,
windmilling and powered operation, and their effects on the proprotor
dynsmics,

Support Equations of Motion
We have obtained now the shaft motion and support equations of
motion, which in natrix form are:

o CNw

ﬂz‘u *Q.‘.‘u +0%wm b Y, » 5634- « ¢

-
vhﬁnﬂnwtudwofm&o-(x')audthouingmpeontml
("‘v ) are

w
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S qw.

Aw = QAwy
fw

RN
and as defined above, the rotor hub forces and moments ( F ), shaft
Y -
motion ( &< ), and aerodymanic gust ( 7 ) ares
r ——
¥y Sx
B =

F = Yy &
[z}

2€Cvy
- Bx

<aq
o
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28my

vo
we

Rl
I
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The matrices of the coefficients of the squations of motion follow.
The matrix ¢, relating the rotor shaft motion to the wing motion, has

been given above.
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EQUATIONS 1CTION

The complete set of equations of motion describing the proprotor
and cantilever wing system may now be obiained, by substituting for the
shaft motion into the rotor forces and moments, and then for the rotor forces
into the wing equations. The result is a set of linear cifferential

equations, of the form:

A,ii +Ax +Acx = Bv +Bg3

. -
where the derrees of freedonm (state) vector ( x ) and the input vector

(71‘) ares

Te ]

- xc] ____ g‘,:
X % w e

i

ve BG:“b
v = ‘. l =

Vw
- Natat
| %

“ecalling the equations for the rotor equations of motion, the rotor hud
forces and moments, the shaft notion, and the wing equations of motinni
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Az\g +AnRg + Aone +xzo( +A &+ AON = BVQ “'&(15

- . Y] ~ A
Fx Caxg + % +Cong + C3 &+ C, & + Cox -f-bgcj
O = evww

LY}

A2%w + A %w +A0%w = Dyvw 4 \93 + aF

the coefficicrt matricer oi the cenrletr equations of motion may be
i’entified, ou:

A kz"
A; = ~
=4 Cl qz-’&'cgc
- -
T A, e
A= <
-—:C| Qu-gcle’
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Treatment of Rotor Pitch/Torsion

‘The equations of motion have been set up including the rotor pitch
'
Y amd with @ (the comnmanted

pitch angle) as the rotor control variable, One nay not wish to include

and torsion degrees of freedom, &

these degrees of freedom in the system dynamics, but it is not possible to
simply drop them at this stage. The pitch control and henﬁing/gimbal
feedback enters the system through the rigid pitch degree of freedom (po),
so it 1s necessary to first operate on the columns of the equation matrices
to account for these effects. Then the degrees of freedom and equations
(columns and rows of the matrices) may be dropped as appropriate. We shall

consider three options for the treatment of the rotor pitch/torsion motion.

The first option is to include the pitch and torsicn degrees of

freedom in the system; then the equations are used as derived.

The second option is the case of a rigid control system. It is
the limit of infinite control system and blade torsion stiffness. Thus
the rotor blade elastic torsion motion is zero, and the response of the
rigid pitch motion reduces to

pe = O —~ E£Xnq — kg, Go

e
° o\ _ [©- Be °
@« e - Z b: 9‘& - v'& @“
o |o O1S [ (s . ges
Thus we operate on the columns of the Ao matrix as follows: @
[
subtract Kp times the e‘:’ column from the (3o column
i
subtract KP times the e‘: column from th. ::) column
1 X
subtract K, times the e‘: column from the "2 colunn
i
(o)
subtract KPG times the ©),¢ column from the &c. column
(oY
subtract KP times the E3|‘ column from the (ﬁb colunn
G 5
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and reconstruct the control matrix B as follows:

CoOW (o)
replace the s column of B with minus the ©¢ column of Ao
replace the é;:T column of B with minus the ES:? column of Ao
CRan ()
replace the ©,, colunn of 1 with minus the ©,4 column of Ao

Then the rigid pitch degrees of freedom and equations of motion are

dropped from the csystem. Note that the apove transformation is only the
result of infinite contreol system stiffness; 3t would be possible to retain
the elastic tersion degrees of freedon, Jropping only the rigid rpitch D

The third option is a quasistatic approximation for the effect
of the blade torsion and pitch motion. ‘'le shall neglect the acceleration
and velocity terms in the torsion/pitch equations. The torsion/vitch
equations then become just a static substitution relation for EB in the
other equations of motion. This treatment retains all the static coupnling
effects in the Ao natrix. The required transformation of the equations is
accomplished as follows, First the Ao' ¥, and BG
to separate the © variables and equations from the rest. Assuming the
=) block is in the midcle of'i, the state equations take the form:

matrices are partitioned,

PA: A:'z A': X = B’ v -+ B.G
A2 22 A? B Gz }
] o - G’ 3(3

» 3z
(] /\o .

A%+ Ak +

Now the acceleration and velocity terms are dropped from the pitch equations;
and we write'? st11l for the state variable vector, but now with the
pitch degrees of freedom dropped. Hence

© =AY [- (& APIn+evralq)

which may be substituted into the remaining equations, eliminating 8 from
Ao (the pitch acceleration and velocity terms in the remaining equations
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are dropped). Thus the quasistatic torsion approximation giver the
following equations of motion, in terms of the reduced state variable
P 3

x (without the torsion/pitch degrees of freedom):

"W 13 v 3
ol 8RS
Ay A A, A,

CATGARYAE AT (Y AR
X
"-A. ZY Y Re-AT(AEY'AY
R'— AT (AY)'B?
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Figure 1.

Proprotor and cantilever wing configuration,
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Figure 3. Geometry of deformed blade.
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Figure 8.
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Geometry of undeformed blade,
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Moure 9. Notation and sign convention for gimbal motlon,
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Figure 10. Rotor blade section aerodynamics; notation and sign
conventions for section forces and velocities,



G

Ve Gust?

3 N

nd sign conventions for rotor velocity and
and

Figure 11. Notatlon 2
orientation (V and u“'). induced velocity (v),
aerodynamic gust velocity components (uc. vgr wG).




*UOT3ITIUDTIO FTIEYS L0301 puv .@Cn J4ABAT1UED JO %-HA.QCOWU A AN q
7
7~ —~—
7 S~
7 — -
\\ \ S~
/
/
/
/
/
/
/
-~
/
/
/
SIXD 21}SD|3 \\\
buim P p

}0US iojoy
4 U ITEY)

13A3)1}UD))

gny 4040y o o1

T




o5

*yTXe D175TId 8ATR031j9 UK 10 ATyduosen T 2andl;s

dy
moaa Buim

UM ;ﬁ

SIXD 21SD0|9@
9A1139}33

m!a
dooms Buig

Viy |y

qnH

—escemy B

v Bt s A



- YTW -
4
- — - - - | |__Elastic_axis
_.___il“_w_____________;_‘wmm'ﬁ_
center
Wing Cr Cw
flap |
. yFO

A TITIIHIHTTHH Ry

YF|

sirure 14. Geometry of wing and wing flap aerodynamics.




